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Frontiers of Retrieval-Augmented Language Models:
Advancing Al Models for Real-World Impact

Large language models (LMs) demonstrate impressive capabilities, yet they often struggle in high-
stakes, real-world applications like medical diagnosis or scholarly literature synthesis. Specifically,
Conventional LMs (Figure |1} left) are prone to generating factual inaccuracies (i.e., hallucinations),
lack transparency for output verification, and require costly retraining for updates. Scaling LMs
alone does not resolve these issues. I introduced a transformative shift from monolithic LMs, pio-
neering Retrieval-Augmented LMs (Figure|l| middle). Retrieval-Augmented LMs retrieve external
knowledge from large-scale text data (datastores) during inference, enabling them to transparently
and accurately handle complex input, such as answering scientists’ literature questions by consult-
ing millions of up—to—date papers. I have established foundational work across three key areas:

Does scaling the corpus of retrieval-augmented LMs to 1 trillion tokens
3> 1improve downstream task performance with Llama3?

Conventional LMs  @::-soseprrmsnnsnee » Retrieval- Augmented LMs @:-reermnanenstrss » Augmented LMs
g | W QP | G Q
Sy efhuenq

Datastore Retriever I
v @ NS
Less hallucination ~~ el
| e pstream tasks, recent work
an shows scaling up datastore helps
Application

¢ — 1 Up-to-date knowledge f o
. ; * Attributions | System Algorithm

Figure 1: Roadmap from Conventional LMs to Retrieval-Augmented LMs to Augmented LMs.

* Establishing the Necessity of Retrieval-Augmented LMs (§I): My work was among the first
to expose the limitations of scaling LMs, particularly hallucinations, and to propose Retrieval-
Augmented LMs as a solution. I demonstrated that, while models like GPT-3 struggle with rare or
long-tail knowledge, Retrieval-Augmented LMs enhance accuracy and provide transparent attri-
butions for verification. Additionally, I showed that they are more compute-optimal and permit
continuous knowledge updates without requiring retraining. [1]-[8]

* Building the Foundation for Retrieval-Augmented LMs (§2): To enhance the reliability and ver-
satility of modern Retrieval-Augmented LMs, I designed new methods to advance both retrievers
and LMs themselves. My framework, Self-RAG, introduces dynamic retrieval and self-evaluation, en-
abling smaller models to match ChatGPT’s factuality. I also pioneered instruction-following retrieval
and designed TART, the first retriever that adapts to user instructions in real time, establishing the
foundation for today’s text and multimodal retrievers. [O1-17]

* Making Real-World Impact through Retrieval-Augmented LMs (§3): My research advances
Retrieval-Augmented LM technology to create AI models that address: (1) expert domains: 1 de-
veloped OpenScholar, an open Retrieval-Augmented LM capable of synthesizing insights from
millions of papers with expert-level accuracy, and (2) low-resource languages: 1 created the first
multilingual Retrieval-Augmented LMs to enhance information access across the globe, along
with benchmarks for under-resourced languages, including African languages. [18]-[28]

Broader Impacts: My research—recognized with honors such as an ACL Paper Award, an ICLR Top
1% Oral Presentation, and MIT Technology Review’s Innovators Under 35 in Japan—has advanced
and popularized Retrieval-Augmented LMs. My work is integrated into widely-used libraries with
millions of downloads and has influenced high-impact tools like ChatGPT Search and Perplexity.

Future Work: I envision future Al models that seamlessly integrate complementary components
like retrieval, verification tools, and specialized models, forming Augmented LMs (Figure (1} right).
Achieving this will require coordinated advancements across Al stacks, systems, algorithms, and
applications. Building on my Retrieval-Augmented LMs work, I will (§4) (1) advance scalable algo-
rithms and training methods for Retrieval-Augmented and Augmented LMs, (2) optimize resource
use and efficiency in these multi-component systems, and (3) partner with domain experts to apply
these innovations in real-world settings, rigorously evaluating their effectiveness and risks.
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1 Establishing the Necessity of Retrieval-augmented LMs

Despite their impressive capabilities and growing utility, LMs remain plagued by significant uncer-
tainties about their potential for catastrophic failures and whether scaling alone can mitigate these
risks. I systematically analyzed LM limitations and proposed Retrieval-Augmented LMs to over-
come them. My work was among the first to develop Retrieval-Augmented LMs, demonstrat-
ing that they (1) significantly reduce hallucinations and (2) improve training efficiency through
compute-efficient scaling while enabling knowledge updates without retraining. To promote adop-
tion, I led the first tutorial on this topic at ACL [6], which has been integrated into university courses,
and delivered over 25 invited talks and nine guest lectures at five universities as a leading expert.

Evaluating and Mitigating LM Hallucinations: A fundamental challenge for LMs is hallucination,
i.e., outputs containing factual errors, but scant research explained when and why this occurs. I con-
ducted the first large-scale quantitative analysis of hallucinations related to factual knowledge mem-
orization in LMs [1]], showing that scaling primarily helps models memorize common knowledge
(red line in Figure , but they still struggle with long-tail knowledge (blue line), i.e., information
underrepresented in pre-training data. Even models with
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ChatGPT hallucinate in over 50% of complex queries. Our Retrieval-Augmented LM, FAVA, trained
for hallucination detection successfully identified and mitigated such diverse hallucinations.
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Figure 3: Retrieval-Augmented LMs re- incorporate up-to-date knowledge without retraining sim-
quire less training and indexing FLOPs. ply by updating the datastore, reducing errors in responses
to time-sensitive user queries (e.g., politics) by 40% [8]].

2 Building the Foundation for Retrieval-augmented LMs

Retrieval-Augmented LMs consist of three core components: a datastore, a retriever, and an LM for
generation, as shown in Figure [I| (middle). My research has advanced all three, laying a principled
foundation for modern Retrieval-Augmented LMs. Specifically, I (1) designed LMs optimized for
retrieval augmentation, and (2) developed a new generation of retrieval systems with improved
versatility and robustness. My work transformed earlier models designed for specific tasks such as
Question Answering (QA) into a general framework capable of solving a broader range of problems.

Designing and Training LMs for Retrieval Augmentation: While combining off-the-shelf LMs
with retrieval models (i.e., RAG) can be effective, it has limitations: LMs often fail to filter irrelevant
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Figure 4: Overview of TART (left) and Self-RAG (right).

context, generate unsupported outputs, while unnecessary retrieval can degrade both efficiency and
performance. I build novel training and inference algorithms as well as new architectures that help
LMs more economically leverage retrieved information [9]-[11]. One such method, Self-RAG [9]
(Figure {4{ right), recognized as an ICLR Oral Presentation (Top 1%) and an Best Paper Honorable
Mention at the NeurIPS workshop, trains LMs to adaptively retrieve—retrieving only when neces-
sary—distinguish between helpful and unhelpful context, and self-critique outputs based on their
faithfulness to cited evidence, leveraging learned special tokens and controlled decoding. Despite
its smaller size (8B and 13B parameters), Self-RAG outperforms much larger LMs across tasks, pro-
ducing responses more reliably supported by citations. It has gained significant traction in academia
and industry, with support from major libraries like Llamalndex and LangChain (15M+ monthly
installations) and recognition in Forbes as a key RAG advancement for real-world applications.

Developing Versatile and Robust Retrievers: Despite advances in neural retrieval, challenges re-
main in achieving versatility, i.e., the ability to identify relevant context across diverse tasks. Fact-
based tasks like QA often rely on word similarity, while tasks such as mathematical reasoning require
retrieval that is based on deeper reasoning patterns even when surface similarity is low. I have aimed
to develop a robust, general-purpose retrieval system that can adapt to various information needs,
enabling more versatile Retrieval-Augmented LMs [12], [13]. Notably, I pioneered the retrieval-
with-instruction paradigm [12] and introduced TART (Figure |4 left), the first retrieval system that
dynamically adjusts its behavior based on user-provided instructions, much like LMs adapt flexibly
to instructions. To support this paradigm shift, I built the first large-scale dataset for instruction-
tuning for retrieval systems, enabling comprehensive training and evaluation. TART sparked nu-
merous follow-up studies with many of today’s top-performing text retrievers and multimodal re-
trieval systems. Traditional retrieval systems also often lack robustness for complex queries—such as
multi-hop questions or obscure entities—leading to missed crucial implied information. Therefore,
I developed PathRetriever [14], a graph-based system that combines neural models with symbolic
graph traversal to enhance both reliability and explainability. This system was integrated into Sales-
force’s COVID Search in 2020, providing researchers with critical COVID-related information. I also
developed LUKE [15] (Most Influential EMNLP 2020 Paper No.8; downloaded 1.4 million times
on HuggingFace), introducing entity-aware pre-training to enhance text representations with entity
knowledge, improving retrieval robustness for entity-centric queries.

3 Making Real-World Impact through Retrieval-augmented LMs

In addition to building these LM advancements, I demonstrate their transformative power in solv-
ing complex real-world problems in domains where LMs struggle due to limited or underrepre-
sented data. My research addresses challenges in two critical areas: (1) expert-domain tasks, aiding
researchers in synthesizing scientific literature and enhancing LM-based code generation, and (2)
low-resource languages, improving information access equity across diverse world languages.

Developing Trustworthy Retrieval-Augmented LMs for Science and Code: LMs can be unreliable
in high-stakes applications like software development assistance and scientific literature synthesis. I
led a team from UW, AI2 Semantic Scholar, Meta, and five universities to develop OpenScholar [18§],
the first open Retrieval-Augmented LM to enhance cross-disciplinary literature synthesis. Open-
Scholar utilizes our datastore with 45 million open-access papers, trained scientific models, and a
self-feedback framework to boost reliability and citation accuracy. We evaluated OpenScholar with
ScholarBench, a large-scale benchmark for literature synthesis across fields like computer science,
physics, biomedicine, and neuroscience, developed with Ph.D. experts. OpenScholar outperformed
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GPT40 and was preferred by experts in over 70% of cases. Its public dem(ﬂ attracted 11k+ users in
one week and featured in VentureBeat. Additionally, we introduced CodeRAG-Bench [19] to enable
comprehensive evaluations of Retrieval-Augmented LMs for code generation tasks.

Improving Information Access across Languages with Retrieval-Augmented LMs: Many LMs are
optimized for English [21]. Furthermore, with web resources varying widely across languages [20],
most world languages lack access to essential information, creating barriers to access to education,
healthcare, and social participation. To address this, I pioneered multilingual Retrieval-Augmented
LMs that retrieve and reason across languages and created benchmarks for languages with vary-
ing resources. I introduced the first end-to-end multilingual Retrieval-Augmented LM, CORA [22]
that trains a unified multilingual retriever and LM using large-scale synthetic data, bypassing the
need for language-specific or translation models. CORA set new state-of-the-art results in multi-
lingual open-domain QA across 26 languages. I also developed XORQA [23], the first large-scale
cross-lingual open-retrieval QA dataset covering seven different languages. These efforts led to col-
laborations on the first QA dataset for 10 African languages [24] and a cross-lingual product QA
system for Amazon [25]. Additionally, I led the inaugural workshop on multilingual information
access [26] and organized shared tasks on multilingual Retrieval-Augmented generation [27].

4 Future Work

As Al takes on increasingly complex, high-stakes roles, I envision a new generation of LMs that I re-
fer to as Augmented LMs (Figure[I|right), i.e., models designed to seamlessly integrate diverse com-
ponents like retrieval mechanisms, verification tools, and specialized domain models. Building on
my work in Retrieval-Augmented LMs, my future research will push the boundaries of Augmented
LMs, leveraging expertise across the Al stack, from infrastructure and algorithms to applications.
This work will involve close collaboration with domain experts in areas such as biomedicine and
systems engineering to ensure rigorous validation and impact in expert-driven, high-stakes settings.

Developing New Architectures and Training for Augmented LMs: Current Al architectures and
training approaches, designed for monolithic LMs, fall short in addressing the complex input and
inference demands of Augmented LMs. Advancing these models will require fundamentally new
architectures that dynamically adapt to diverse signals and real-time contexts. 1 aim to explore improved
caching mechanisms and transformer alternatives like state-space models for efficient long-context
processing, as well as designs that more effectively integrate multimodal input [28]. Achieving op-
timal performance will also involve tailored training strategies for multi-component systems, with objec-
tives that incorporate feedback across components and use advanced synthetic data generation.

Improving Infrastructures for Augmented LMs: Augmented LMs bring unique system-level chal-
lenges that require infrastructure capable of supporting diverse computational needs. For instance,
unlike conventional monolithic LMs, which primarily depend on GPU-intensive tasks with mini-
mal data transfer, Retrieval-Augmented LMs need optimized CPU and memory usage, high-speed
interconnects, and efficient data flow across nodes [4]. To address unique requirements, I plan to
collaborate with systems experts to pinpoint inefficiencies in current resource allocation. Together,
we will design infrastructure that optimally allocates resources across the entire Augmented LM pipeline,
adjusting to different stages of inference, informed by insights from algorithmic advancements.

Integrating and Advancing Augmented LMs for New Expert Domains: I am committed to devel-
oping Al models that address the specific needs of specialized fields and less-common languages. Building
trustworthy Al for these areas requires custom advancements and rigorous evaluation with do-
main experts beyond Computer Science, as demonstrated with OpenScholar. Moving forward, I
will design Augmented LMs that tackle the unique challenges of expert domains by collaborating
directly with professionals. For instance, I plan to work closely with clinicians to develop medical
Augmented LMs for diagnosing rare conditions while rigorously assessing potential risks to ensure
safety. By aligning models to these distinct needs and carefully monitoring real-world outcomes, I
aim to create robust, responsible Al systems that provide meaningful support to yield innovative
findings in specialized fields.

Thttps://openscholar.allen.ai/
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