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Knowledgable and versatile Language Models (LMs)
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Open AI. 2023. GPT4 Technical Report. 



Knowledgable and versatile Language Models (LMs)
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How do such parametric LMs work?
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The   capital   city   of   Ontario   is

Language model (Transformers)

x1 x2 xn−1⋯

Large-scale pre-
training corpus  
(e.g., 1T tokens)

Tronto is The capital city of 
Ontario is Toronto

P(xn |x1, x2, ⋯, xn−1)
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Large-scale pre-
training corpus  
(e.g., 1T tokens)

0.52
0.31

0.13
0.03

0.01

Toronto 
Ottawa 

Vancouver 
Montreal 
Calgary

…

Ontario’s capital city, 

Language model (Transformers)

x1 x2 xn−1⋯

P(xn |x1, x2, ⋯, xn−1)

No explicit access to  
large-scale text data

How do such parametric LMs work?
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LM

 The capital city of Ontario is Toronto

Training time

LM

 The capital city of Ontario is _____

Test time

How do such parametric LMs work?



Hallucinations in LM outputs
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(*February 18, 2024)



Catastrophic Errors as Results of LM Hallucinations
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Retrieval-augmented LMs
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LM

 The capital city of Ontario is Toronto

Training time

LM

 The capital city of Ontario is _____

Test time

Datastore!



Inference
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Datastore

Index

LMQuery

Input



Inference: Datastore
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Datastore

Index

LM

Raw text corpus

Input

Query

At least billions~trillions of tokens
Not labeled datasets

Not structured data (knowledge bases)



Inference: Index
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Datastore

Index

LM

Input

Query

Find a small subset of elements in a datastore 
that are the most similar to the query

Retrieval input
(not necessarily input to the LM)



Inference: Search
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Datastore

Index

LM

Input

Query

Retrieval



Inference: Incorporation
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Datastore

Index

LM

Input

Query



Retrieval-augmented LMs are now widely used! 
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Today’s outline
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Why do we need retrieval-augmented LMs? 

Architectures of retrieval-augmented LMs (Inference)

Training of retrieval-augmented LMs

Limitations and future directions

Question:  
https://bit.ly/
akari_ralm_lec  

https://bit.ly/akari_ralm_lec
https://bit.ly/akari_ralm_lec
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Why do we need retrieval-augmented LMs? 

Architectures of retrieval-augmented LMs (Inference)

Training of retrieval-augmented LMs

Limitations and future directions

Question:  
https://bit.ly/
akari_ralm_lec  

https://bit.ly/akari_ralm_lec
https://bit.ly/akari_ralm_lec


A: Because retrieval-augmented LMs can solve 
many core limitations of parametric LMs! 
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Hallucinations

Lack of attributions

Costs of adaptations 

Copyright / privacy

Large parameter size

(*February 18, 2024)

Core limitations of parametric LMs
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Hallucinations

Lack of attributions

Costs of adaptations 

Copyright / privacy

Large parameter size

Lack of attributions

Language model

Explain Akari Asai, including the list of her famous papers.

Her most famous paper is “Large-Scale Multi-Document 
Summarization Dataset and Evaluation Benchmark”

Core limitations of parametric LMs



21

Hallucinations

Lack of attributions

Costs of adaptations 

Copyright / privacy

Large parameter size

Lack of attributions

Costs of adaptations 

Lack of attributions

Language model

Crawled Web data in 2022 

Core limitations of parametric LMs
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Hallucinations

Lack of attributions

Costs of adaptations 

Copyright / privacy

Large parameter size

Lack of attributions

Costs of adaptations 

Lack of attributions

Language model

Retrain LMs using 2024 data

Core limitations of parametric LMs
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Hallucinations

Lack of attributions

Costs of adaptations 

Copyright / privacy

Large parameter size

Lack of attributions

Costs of adaptations 

Lack of attributions

Copyright / privacy

Costs of adaptations 

Dodge et al., Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus. EMNLP 2021. 

Copyright-protected data?

Core limitations of parametric LMs



Hallucinations

Lack of attributions

Costs of adaptations 

Copyright / privacy

Large parameter size

Lack of attributions

Costs of adaptations 

Lack of attributions

Copyright / privacy

Costs of adaptations 

New York Times lawsuits 
against OpenAI

Core limitations of parametric LMs
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Hallucinations

Lack of attributions

Costs of adaptations 

Copyright / privacy

Large parameter sizeLarge parameter size

Hallucinations

Long-tail QA 
performance 

100 quintillion parameters required to reach 
human performance 

Kandpal et al., Large Language Models Struggle to Learn Long-Tail Knowledge. ICML 2023. 

Core limitations of parametric LMs



Q: So how can retrieval-augmented LMs 
solve those challenges? 
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How retrieval-augmented LMs solve the issues? 
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Hallucinations

Lack of attributions

Costs of adaptations 

Copyright / privacy

Large parameter size
Mallen*, Asai* et al. When Not to Trust Language Models: Investigating Effectiveness of 

Parametric and Non-Parametric Memories (Best Video; Oral) 2023. 

Significant improvements across model scale, 
with larger gain with smaller LMs

QA 
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Hallucinations

Lack of attributions

Costs of adaptations 

Copyright / privacy

Large parameter size

Lack of attributions

LM

Input

Index

Query

Output

Retrieved text can be used as attributions

How retrieval-augmented LMs solve the issues? 
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Hallucinations

Lack of attributions

Costs of adaptations 

Copyright / privacy

Large parameter size

Lack of attributions

Costs of adaptations 

Lack of attributions

LM (GPT-3)

Input

Index 
(2021)

Query

Output2024

Kasai et al.,. REALTIME QA: What’s the Answer Right Now. 
NeurIPS Dataset and Benchmark 2023. 

Replacing datastores to catch up dynamically 
changing world without re-training

How retrieval-augmented LMs solve the issues? 
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Hallucinations

Lack of attributions

Costs of adaptations 

Copyright / privacy

Large parameter size

Lack of attributions

Costs of adaptations 

Lack of attributions

Copyright / privacy

Costs of adaptations 

Min* and Gururangan* et al., SILO Language Models: Isolating Legal 
Risk In a Nonparametric Datastore. ICLR 2024. 

Segregating copyright-sensitive data from 
pre-training data

How retrieval-augmented LMs solve the issues? 
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Mallen*, Asai* et al., When Not to Trust Language Models: Investigating Effectiveness of 

Parametric and Non-Parametric Memories (Best Video; Oral) 2023. 

QA 

Hallucinations

Lack of attributions

Costs of adaptations 

Copyright / privacy

Large parameter sizeLarge parameter size

Hallucinations Smaller LMs with retrieval outperform much larger 
LMs e.g., GPT-3

How retrieval-augmented LMs solve the issues? 



Today’s outline
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Why do we need retrieval-augmented LMs? 

Architectures of retrieval-augmented LMs (Inference)

Training of retrieval-augmented LMs

Limitations and future directions



Notations
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Index

LMq

𝒟

Inputx

Output

Datastore
y

Query



Inference: Index

34

: a similarity score between two pieces of textsim

Goal: find a small subset of elements in a datastore 
that are the most similar to the query

sim(i, j) = tfi,j × log
N
dfi# of occurrences of  in i j

# of docs containing i

# of total docs
Example

sim(i, j) = Encoder(i) ⋅ Encoder( j)
Maps the text into an -dimensional vectorh

Example

An entire field of 
study on how to get 

(or learn) the 
similarity function 

better
(We’ll see some later!)



Index: given , return  through fast nearest neighbor searchq argTop-kd∈𝒟sim(q, d)

Inference: Index
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: a similarity score between two pieces of textsim

Goal: find a small subset of elements in a datastore 
that are the most similar to the query

 elements from a datastorek

Can be a totally separate research area on 
how to do this fast & accurate

https://github.com/
facebookresearch/faiss/wiki/


https://github.com/facebookresearch/faiss/wiki/
https://github.com/facebookresearch/faiss/wiki/
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LM

How to use retrieval?

Input

Output

When to retrieve?

w/ retrieval

 The capital  city  of  Ontario  is  Toronto.

w/ retrieval  w/ r  w/r  w/r  w/ r  w/r  w/r

 The capital  city  of  Ontario  is  Toronto.

w/ retrieval                     w/r               w/r

 The capital  city  of  Ontario  is  Toronto.

Text chunks (passages)?
Tokens?

Something else?

What to retrieve?

Query

Categorization of retrieval-augmented LMs



Categorization of retrieval-augmented LMs
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LM

How to use retrieval?

Input

Output

When to retrieve?

w/ retrieval

 The capital  city  of  Ontario  is  Toronto.

w/ retrieval  w/ r  w/r  w/r  w/ r  w/r  w/r

 The capital  city  of  Ontario  is  Toronto.

w/ retrieval                     w/r               w/r

 The capital  city  of  Ontario  is  Toronto.

Text chunks (passages)?
Tokens?

Something else?

What to retrieve?

Query
Today we focus on 
1. What to retrieve
2. How to use retrieval 



Three representative architectures
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What: Text chunks 
How: Input

Text chunks + intermediate

Tokens + Output

More details? 

• Section 3 of our tutorial (https://acl2023-
retrieval-lm.github.io/) 

• Our position paper (Asai et al., 2024; https://
akariasai.github.io/assets/pdf/ralm_position.pdf)

What: Text chunks 
How: Intermediate

What: Tokens
How: Output

Input augmentation (RAG)

Output interpolations

Intermediate fusion

https://acl2023-retrieval-lm.github.io/
https://acl2023-retrieval-lm.github.io/
https://akariasai.github.io/assets/pdf/ralm_position.pdf
https://akariasai.github.io/assets/pdf/ralm_position.pdf


Three representative architectures
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What: Text chunks 
How: Input

Text chunks + intermediate

Tokens + Output

More details? 

• Section 3 of our tutorial (https://acl2023-
retrieval-lm.github.io/) 

• Our position paper (Asai et al., 2024; https://
akariasai.github.io/assets/pdf/ralm_position.pdf)

What: Text chunks 
How: Intermediate

What: Tokens
How: Output

REALM (Guu et al., 2020) 

kNN-LM (Khandelwal et al., 2020) 

RETRO (Borgeaud et al., 2021) 

https://acl2023-retrieval-lm.github.io/
https://acl2023-retrieval-lm.github.io/
https://akariasai.github.io/assets/pdf/ralm_position.pdf
https://akariasai.github.io/assets/pdf/ralm_position.pdf


Three representative architectures
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What: Text chunks 
How: Input

Text chunks + intermediate

Tokens + Output

What: Text chunks 
How: Intermediate

What: Tokens
How: Output

REALM (Guu et al., 2020) 

kNN-LM (Khandelwal et al., 2020) 

RETRO (Borgeaud et al., 2021) 

More details? 

• Section 3 of our tutorial (https://acl2023-
retrieval-lm.github.io/) 

• Our position paper (Asai et al., 2024; https://
akariasai.github.io/assets/pdf/ralm_position.pdf)

https://acl2023-retrieval-lm.github.io/
https://acl2023-retrieval-lm.github.io/
https://akariasai.github.io/assets/pdf/ralm_position.pdf
https://akariasai.github.io/assets/pdf/ralm_position.pdf


REALM (Guu et al 2020)
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x = World Cup 2022 was the last with 32 teams before the increase to [MASK] in 2026.

LM

World Cup 2022 was … the increase to [MASK] in 2026.

48

Guu et al. REALM: Retrieval-Augmented Language Model Pre-Training. ICML 2020.



REALM (Guu et al 2020)
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x = World Cup 2022 was the last with 32 teams before the increase to [MASK] in 2026.

Retrieval

q (=x)

LM

World Cup 2022 was … the increase to [MASK] in 2026.

FIFA World Cup 2026 
will expand to 48 teams.

k chunks of text 
(passages)

Guu et al. REALM: Retrieval-Augmented Language Model Pre-Training. ICML 2020.



REALM (Guu et al 2020)
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Retrieval

FIFA World Cup 2026 
will expand to 48 teams.

x

LM

FIFA World Cup 2026 will expand to 48 teams. 
… 

World Cup 2022 was … the increase to [MASK] in 2026.

48

Retrieve stage Read stage

k chunks of text 
(passages)

x = World Cup 2022 was the last before the increase to [MASK] in the 2026 tournament.

Guu et al. REALM: Retrieval-Augmented Language Model Pre-Training. ICML 2020.



Encoder

Encoder

Encoder

z = Encoder(z)

REALM: (1) Retrieve stage
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Team USA celebrated 
after winning its match 

against Iran …

In 2022, the 32 national 
teams involved in the 

tournament.

FIFA World Cup 2026 
will expand to 48 teams.

Encoder

Wikipedia 
13M chunks (passages) 

(called documents in the paper)

Fast nearest neighbor search

x = Encoder(x)

z1, . . . , zk = argTop-k (x ⋅ z)
k retrieved chunks

World Cup 2022 was … the increase to [MASK] in 2026.x =



REALM: (2) Read stage
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∑
z∈𝒟

P(z |x)P(y |x, z)

[MASK]  [SEP] z1 x LM P(y |x, z1)

[MASK]  [SEP] zk x LM P(y |x, zk)

[MASK]  [SEP] z2 x LM P(y |x, z2)

…

Weighted average

from the 
retrieve stage

from the 
read stage

Need to approximate 
 Consider top k chunks only→

Guu et al. REALM: Retrieval-Augmented Language Model Pre-Training. ICML 2020.



Recent trend: RAG with LLMs
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Index

LM

Shi et al. REPLUG: Retrieval-Augmented Black-Box Language Models. Arxiv 2023. 
Ram et al. In-Context Retrieval-Augmented Language Models. TACL 2023. 

Existing parametric LMs 

(e.g., GPT-3)

Off-the-shelf retrievers (e.g., 
Google search, BM25, DPR)

Simply combining existing models w/o 
training has shown to be successful! 



Three representative architectures
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What: Text chunks 
How: Input

Text chunks + intermediate

Tokens + Output

What: Text chunks 
How: Intermediate

What: Tokens
How: Output

REALM (Guu et al., 2020) 

kNN-LM (Khandelwal et al., 2020) 

RETRO (Borgeaud et al., 2021) 

More details? 

• Section 3 of our tutorial (https://acl2023-
retrieval-lm.github.io/) 

• Our position paper (Asai et al., 2024; https://
akariasai.github.io/assets/pdf/ralm_position.pdf)

https://acl2023-retrieval-lm.github.io/
https://acl2023-retrieval-lm.github.io/
https://akariasai.github.io/assets/pdf/ralm_position.pdf
https://akariasai.github.io/assets/pdf/ralm_position.pdf
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RETRO (Borgeaud et al. 2022)

Scale the datastore (1.8T tokens)

Incorporation in the “intermediate layer” instead of the “input” layer 
 designed for many chunks, frequently, more efficiently→

Borgeaud et al. Improving language models by retrieving from trillions of tokens. ICML 2021.
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RETRO (Borgeaud et al. 2021)

x = World Cup 2022 was the last with 32 teams, before the increase to
x1 x2 x3

LM 
Encoder

E1

E2

E3

(A  matrix)r × k × d
( # tokens per text chunk)r =
( hidden dimension)d =
( # retrieved chunks per split)k =

IndexRetrieval 
Encoder

x1

x2

x3

p1
1 . . . pk

1

p1
2 . . . pk

2

p1
3 . . . pk

3

(  chunks of text per split)k

Borgeaud et al. Improving language models by retrieving from trillions of tokens. ICML 2021.
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Regular decoder

EMB

x1

x2

x3

ATTN FFN
HEAD

Transformers blocks (xL)

Borgeaud et al. Improving language models by retrieving from trillions of tokens. ICML 2021.



EMB
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Decoder in RETRO

EMB

x1

x2

x3

ATTN CCA FFN
HEAD

Chunked Cross Attention (CCA)

RETRO blocks (xL)

E1 E2 E3

Borgeaud et al. Improving language models by retrieving from trillions of tokens. ICML 2021.
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Chunked Cross Attention

Outputs from the previous layer

Borgeaud et al. Improving language models by retrieving from trillions of tokens. ICML 2021.
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Chunked Cross Attention

Outputs from the previous layer

Borgeaud et al. Improving language models by retrieving from trillions of tokens. ICML 2021.
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Chunked Cross Attention

Outputs from the previous layer

Borgeaud et al. Improving language models by retrieving from trillions of tokens. ICML 2021.
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Chunked Cross Attention

Outputs from the previous layer Inputs to the next layer

Borgeaud et al. Improving language models by retrieving from trillions of tokens. ICML 2021.
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Results

RETRO (w/ Wikipedia) outperforms its parametric counterpart

Perplexity: The lower the better

Borgeaud et al. Improving language models by retrieving from trillions of tokens. ICML 2021.
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Results

RETRO w/ 1.8T datastores achieves SOTA

Perplexity: The lower the better

Borgeaud et al. Improving language models by retrieving from trillions of tokens. ICML 2021.
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Results

Gains are constant with model scale The larger datastore is, the better

Borgeaud et al. Improving language models by retrieving from trillions of tokens. ICML 2021.

x=Baseline


o=RETRO



Three representative architectures
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What: Text chunks 
How: Input

Text chunks + intermediate

Tokens + Output

What: Text chunks 
How: Intermediate

What: Tokens
How: Output

REALM (Guu et al., 2020) 

kNN-LM (Khandelwal et al., 2020) 

RETRO (Borgeaud et al., 2021) 

More details? 

• Section 3 of our tutorial (https://acl2023-
retrieval-lm.github.io/) 

• Our position paper (Asai et al., 2024; https://
akariasai.github.io/assets/pdf/ralm_position.pdf)

https://acl2023-retrieval-lm.github.io/
https://acl2023-retrieval-lm.github.io/
https://akariasai.github.io/assets/pdf/ralm_position.pdf
https://akariasai.github.io/assets/pdf/ralm_position.pdf


kNN-LM (Khandelwal et al. 2020)
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A different way of using retrieval, where the LM outputs a 
nonparametric distribution over every token in the data.

Can be seen as an incorporation in the “output” layer

Khandelwal et al. Generalization through Memorization: Nearest Neighbor Language Models. ICLR 2020. 



kNN-LM (Khandelwal et al. 2020)

61Khandelwal et al. Generalization through Memorization: Nearest Neighbor Language Models. ICLR 2020. 



kNN-LM (Khandelwal et al. 2020)

62Khandelwal et al. Generalization through Memorization: Nearest Neighbor Language Models. ICLR 2020. 

Parametric distribution 



kNN-LM (Khandelwal et al. 2020)
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… Obama was senator for Illinois from 1997 to 
2005, …. Barack is Married to Michelle and their 
first daughter, … Obama was born in Hawaii, and 
graduated from Columbia University. … Obama is a 
native of Hawaii, ….

Khandelwal et al. Generalization through Memorization: Nearest Neighbor Language Models. ICLR 2020. 



kNN-LM (Khandelwal et al. 2020)
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Which tokens in a datastore are close to the next token?

Khandelwal et al. Generalization through Memorization: Nearest Neighbor Language Models. ICLR 2020. 



kNN-LM (Khandelwal et al. 2020)
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Which tokens in a datastore are close to the next token?

Which prefixes in a datastore are close to the prefix we have?

=

Khandelwal et al. Generalization through Memorization: Nearest Neighbor Language Models. ICLR 2020. 

The size of the datastore = # of tokens in the corpus (>1B)



kNN-LM (Khandelwal et al. 2020)
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Which vectors in a datastore are close to the vector we have?

Khandelwal et al. Generalization through Memorization: Nearest Neighbor Language Models. ICLR 2020. 



kNN-LM (Khandelwal et al. 2020)
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Which vectors in a datastore are close to the vector we have?

Khandelwal et al. Generalization through Memorization: Nearest Neighbor Language Models. ICLR 2020. 



kNN-LM (Khandelwal et al. 2020)
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PkNN−LM(y |x) = (1 − λ)PLM(y |x) + λPkNN(y |x)
: hyperparameterλ

Khandelwal et al. Generalization through Memorization: Nearest Neighbor Language Models. ICLR 2020. 

Nonparametric distribution

Parametric distribution 



kNN-LM - results
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Better with bigger datastoreOutperforms no-retrieval LM

No-retrieval LM

30x larger No-retrieval LM

kNN-LM

The lower the better

Khandelwal et al. Generalization through Memorization: Nearest Neighbor Language Models. ICLR 2020. 



Three representative architectures
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What: Text chunks 
How: Input

Text chunks + intermediate

Tokens + Output

More details? 

• Section 3 of our tutorial (https://acl2023-
retrieval-lm.github.io/) 

• Our position paper (Asai et al., 2024; https://
akariasai.github.io/assets/pdf/ralm_position.pdf)

What: Text chunks 
How: Intermediate

What: Tokens
How: Output

REALM (Guu et al., 2020) 

kNN-LM (Khandelwal et al., 2020) 

RETRO (Borgeaud et al., 2021) 

https://acl2023-retrieval-lm.github.io/
https://acl2023-retrieval-lm.github.io/
https://akariasai.github.io/assets/pdf/ralm_position.pdf
https://akariasai.github.io/assets/pdf/ralm_position.pdf


Today’s outline
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Why do we need retrieval-augmented LMs? 

Architectures of retrieval-augmented LMs (Inference)

Training of retrieval-augmented LMs

Limitations and future directions

Question:  
https://bit.ly/
akari_ralm_lec  

https://bit.ly/akari_ralm_lec
https://bit.ly/akari_ralm_lec


Training retrieval-augmented LMs
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Index

LM

Input

Output

Datastore

Back- 
propagate

Back-propagate

Query



Why is training challenging?
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Index

LM

Input

Output

Datastore

Back- 
propagate

Back-propagate

Query

⚠
Training LMs can 

be very expensive!



Why is training challenging?
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Index

LM

Input

Output

Datastore

Back- 
propagate

⚠
Too large! Expensive to update 

index during training!

Back-propagate

Query

⚠
Training LMs can 

be very expensive!



Challenges of updating retrieval models
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Datastore

x1

x2

x3

…

Encoder Index

We may encode a lot of (>100M) 
text chunks using the encoder!



Challenges of updating retrieval models
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Datastore

x1

x2

x3

…

Encoder Index

During training, we will update the encoder



Challenges of updating retrieval models
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Datastore

x1

x2

x3

…

Encoder Index

Re-indexing will be very expensive!



Training methods for retrieval-augmented LMs

• Independent training

• Sequential training

• Joint training w/ asynchronous index update

• Joint training w/ in-batch approximation

78



• Independent training 
• Sequential training

• Joint training w/ asynchronous index update

• Joint training w/ in-batch approximation
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Training methods for retrieval-augmented LMs



Independent training

Retrieval models and language models are trained independently

Retriever

LMInput Output

Query
Datastore

Chunks/tokens

- Training retrieval models

- Training language models

80



Independent training

Retrieval models and language models are trained independently

Retriever

LMInput Output

Query
Datastore

Chunks/tokens

- Training retrieval models

- Training language models

81



Sparse retrieval models: TF-IDF / BM25 

No training needed!

82

In 1997, Apple merged with NeXT, 
and Steve Jobs became CEO of …

Jobs returned to Apple as CEO 
after the company's acquisition …

[0, 0, 0.4, 0, 0.8, 0.7, …]

[0, 1.2, 0.4, 0, 0.8, 0, …]

Text chunks Sparse vectors

Lexical overlap

Ramos. Using TF-IDF to Determine Word Relevance in Document Queries. 2023. 
Robertson and Zaragoza. The Probabilistic Relevance Framework: BM25 and Beyond. 

Foundations and Trends in Information Retrieval 2009.



Dense retrieval models: DPR (Karpukhin et al. 2020)

Encoder Encoder

Query Text chunks

q

Inner Product Similarity

83

Dense vectors

Karpukhin et al. Dense Passage Retrieval for Open-Domain Question Answering. EMNLP 2020.



Training dense retrieval models: DPR

Encoder Encoder

Query Text chunks

q

Inner Product Similarity

84Karpukhin et al. Dense Passage Retrieval for Open-Domain Question Answering. EMNLP 2020.



Training dense retrieval models: DPR

Encoder Encoder

Query Text chunks

q

Inner Product Similarity

L(q, p+, p−
1 , p−

2 , …, p−
n )

= − log
exp(sim(q, p+))

exp(sim(q, p+)) + ∑n
j=1 exp(sim(q, p−

j ))

85Karpukhin et al. Dense Passage Retrieval for Open-Domain Question Answering. EMNLP 2020.



Training dense retrieval models: DPR

Encoder Encoder

Query Text chunks

q

Inner Product Similarity

L(q, p+, p−
1 , p−

2 , …, p−
n )

= − log
exp(sim(q, p+))

exp(sim(q, p+)) + ∑n
j=1 exp(sim(q, p−

j ))
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Contrastive learning

Karpukhin et al. Dense Passage Retrieval for Open-Domain Question Answering. EMNLP 2020.
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Training dense retrieval models: DPR
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Positive passage

Karpukhin et al. Dense Passage Retrieval for Open-Domain Question Answering. EMNLP 2020.



Training dense retrieval models: DPR

Encoder Encoder

Query Text chunks

q

Inner Product Similarity

L(q, p+, p−
1 , p−

2 , …, p−
n )

= − log
exp(sim(q, p+))

exp(sim(q, p+)) + ∑n
j=1 exp(sim(q, p−

j ))
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Positive passage

Negative passages 
Too expensive to consider all negatives!



RAG with LMs using different retrievers
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Better retrieval model
Better base LMs 

Better retrieval-based LMs

Each component can be improved 
separately

Ram et al. In-Context Retrieval-Augmented Language Models. TACL 2023.



Independent training

Work with off-the-shelf models (no extra training required)

Each part can be improved independently
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Independent training

Work with off-the-shelf models (no extra training required)

Each part can be improved independently

LMs are not trained to leverage retrieval

Retrieval models are not optimized for LM tasks/domains
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• Independent training

• Sequential training 
• Joint training w/ asynchronous index update

• Joint training w/ in-batch approximation
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Training methods for retrieval-augmented LMs



Sequential training

- One component is first trained independently and then fixed

- The other component is trained with an objective that depends on the first one
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Sequential training

- One component is first trained independently and then fixed

- The other component is trained with an objective that depends on the first one
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Retriever LM



Sequential training

- One component is first trained independently and then fixed

- The other component is trained with an objective that depends on the first one
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Retriever LM Retriever LM



Sequential training

- One component is first trained independently and then fixed

- The other component is trained with an objective that depends on the first one
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Retriever LM Retriever LM

e.g., RETRO; WebGPT
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RETRO: Training
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RETRO: Training

IndexRetrieval 
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⚠

Updating an index with 600B is 
extremely expensive!!
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RETRO: Training

IndexRetrieval 
Encoder

x1
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LM 
Encoder

E1

E2

E3

EMB

RETRO blocks (xL)

ATTN CCA FFW HEAD

E1 E2 E3

Back-propagate

Stop-gradient

Fix the retrieval encoder and 
the index during training!



Sequential training

Work with off-the-shelf components (either a large index or a powerful LM)

LMs are trained to effectively leverage retrieval results

One component is still fixed and not trained

Retrievers are trained to provide text that helps LMs the most
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Sequential training

Work with off-the-shelf components (either a large index or a powerful LM)

LMs are trained to effectively leverage retrieval results

One component is still fixed and not trained

Retrievers are trained to provide text that helps LMs the most

102

Let’s jointly train retrieval models and LMs!



• Independent training

• Sequential training

• Joint training w/ asynchronous index update  
• Joint training w/ in-batch approximation
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Training methods for retrieval-augmented LMs



• Independent training

• Sequential training

• Joint training w/ asynchronous index update 
• Joint training w/ in-batch approximation
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Training methods for retrieval-augmented LMs



Joint training w/ asynchronous index update

- Retrieval models and language models are trained jointly

- Allow the index to be “stale”; rebuild the retrieval index every T steps

Index

LM

Input

Output

Back- 
propagate

Datastore

Back-propagate w/  
asynchronous update
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Asynchronous index update
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Datastore

x1

x2

x3

…

Encoder Index



Asynchronous index update
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Datastore

x1

x2

x3

…

Updated 
Encoder

Stale 
Index



Asynchronous index update
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Datastore

x1

x2

x3

…

Updated 
Encoder

Updated 
Index

T updates Refresh



REALM (Guu et al. 2020)
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Index

LM

x = The [MASK] at the top of the pyramid.

The pyramidion on top 
allows for less material 
higher up the pyramid.

q (=x) The pyramidion on top … the pyramid. 
… 

The [MASK] at the top of the pyramid.

pyramid

P(z |x) P(y |x, z)
Guu et al. REALM: Retrieval-Augmented Language Model Pre-Training. ICML 2020.



REALM: Training
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Index

LM
The pyramidion on top 
allows for less material 
higher up the pyramid.

q (=x)
The pyramidion on top … the pyramid. 

… 
The [MASK] at the top of the pyramid.

pyramid

Pθ(z |x) Pθ(y |x, z)

Objective: maximize ∑
z∈𝒵θ

Pθ(z |q)Pθ(y |q, z)

 : top-K retrieved chunks𝒵θ

Guu et al. REALM: Retrieval-Augmented Language Model Pre-Training. ICML 2020.



REALM: Training
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Index

LM
The pyramidion on top 
allows for less material 
higher up the pyramid.

q (=x)
The pyramidion on top … the pyramid. 

… 
The [MASK] at the top of the pyramid.

pyramid

Pθ(z |x) Pθ(y |x, z)

Objective: maximize ∑
z∈𝒵θ

Pθ(z |q)Pθ(y |q, z)

 : top-K retrieved chunks𝒵θ

Back-propagation

Guu et al. REALM: Retrieval-Augmented Language Model Pre-Training. ICML 2020.



REALM: Training

112

Index

LM
The pyramidion on top 
allows for less material 
higher up the pyramid.

q (=x)
The pyramidion on top … the pyramid. 

… 
The [MASK] at the top of the pyramid.

pyramid

Pθnew
(z |x) Pθnew

(y |x, z)

Objective: maximize ∑
z∈𝒵θ

Pθ(z |q)Pθ(y |q, z)

Up-to-date parameters

Stale index;  
Update every T steps

 : top-K retrieved chunks𝒵θ



REALM: Index update rate
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How often should we update the retrieval index? 
- Frequency too high: expensive

- Frequency too slow: out-dated

REALM: updating the index every 500 training steps

20

25

30

35

40

28.70

38.20

30× slower updateREALM

EM score on NQ

Guu et al. REALM: Retrieval-Augmented Language Model Pre-Training. ICML 2020.



Joint training 

End-to-end trained — each component is optimized

Good performance

Training is more complicated 

(async update, overhead, data batching, etc)

114

Train-test discrepancy still remains



Today’s outline
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Why do we need retrieval-augmented LMs? 

Architectures of retrieval-augmented LMs (Inference)

Training of retrieval-augmented LMs

Limitations and future directions

Question:  
https://bit.ly/
akari_ralm_lec  

https://bit.ly/akari_ralm_lec
https://bit.ly/akari_ralm_lec
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Challenge: retrieval-augmented LMs for applications
Open-ended text generation? Reasoning?

Doesn’t improve open-ended generation Failure of retrieval in reasoning task

0

4

8

12

16

MAUVE RankGen PPL (GPT-3) 

GPT-2
kNN-LM

Wang et al. kNN-LM Does Not Improve Open-
ended Text Generation. ACL 2023.

BehnamGhader et al. Can Retriever-Augmented Language Models Reason? The Blame 
Game Between the Retriever and the Language Model. EMNLP Findings 2023.



Challenge: efficiency retrieval-augmented LMs
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Additional costs from retrieval augmentation

LM

Datastore

+

+

Retrieval-augmented LMs add inference costs

Mallen*, Asai* et al., When Not to Trust Language Models: 
Investigating Effectiveness of Parametric and Non-Parametric Memories (Best Video; Oral) 2023. 
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GPT-j 6B GPT-neox-20B

Vanilla Retrieval-augmented



Challenge: scaling retrieval-augmented LMs
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LM

Datastore

LM

A small LM + a large datastore  a large parametric LM?≈

vs.

LM

# of parameters # of tokens

kNN-LM (Khandelwal et al., 2020) 250M  3B

NPM (Min et al., 2023) 350M 1B

Atlas (Izacard et al., 2022) 11B ~30B

RETRO (Borgeaud et al., 2021) 7B 2T

REPLUG (Shi et al., 2023) 175B ~5B

Datastore

≤

≤



Challenge: robustness and controllability
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Retrieval-augmented LMs can still hallucinate

Liu et al. Evaluating Verifiability in Generative Search 
Engines. Findings of EMNLP 2023. 



Roadmap to advance retrieval-augmented LMs
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Rethink Retrieval and Datastore

Advance Architectures & 
Retrieval-aware Training

Investment Infrastructures for 
Training and Inference at Scale



Beyond semantic and lexical-similarity based search
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Asai et al., Task-aware Retrieval with Instruction. 
Findings of ACL 2023. 

Lin et al., RA-DIT: Retrieval-Augmented Dual Instruction Tuning. 
ICLR 2024.

Training retrievers to optimize end-to-end retrieval-augmented LM performance
 in diverse tasks tasks 



Roadmap to advance retrieval-augmented LMs
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Rethink Retrieval and Datastore

Advance Architectures & 
Retrieval-aware Training

Investment Infrastructures for 
Training and Inference at Scale



New architectures for performance and efficiency
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Muennighoff et al. Generative 
Representational Instruction Tuning. 2024. 

Cao et al. BTR: Binary Token 
Representations for Efficient Retrieval 

Augmented Language Models. ICLR 2024. 

Further explorations of unified architectures & caching



Training LMs with Retrieval
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Training LMs to learn to use retrieval during pre-training or instruction-tuning

Asai et al. Self-RAG: Learning to Retrieve, Generate and 
Critique with Retrieval. ICLR  2024. 

Instruc(on-tuning with retrieval 

Shi. et al. In-Context Pretraining: Language Modeling 
Beyond Document Boundaries. ICLR 2024. 

Retrieval-aware pre-training



Roadmap to advance retrieval-augmented LMs
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Rethink Retrieval and Datastore

Advance Architectures & 
Retrieval-aware Training

Investment Infrastructures for 
Training and Inference at Scale
Investment Infrastructures for 
Training and Inference at Scale

Advance Architectures & 
Retrieval-aware Training



Retrieval-augmented LMs can be really expensive! 
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Datastore

LM

Index

Query

Output

Scaling up DS to trillion tokens

End-to-end training  
w/ Index updates

Inference with many  
documents 



More open-sourced and collaborative opportunities
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System / Algorithmic improvements for massive Datastore 

Standardized implementations for efficient training

Fast inference algorithms for retrieval-augmented LMs 



Summary & QA
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Contact: akari@cs.washington.edu 
Website: https://akariasai.github.io/ 
Twitter: @AkariAsai

ACL 2023 tutorial:  https://acl2023-retrieval-
lm.github.io/ 
Position paper: https://akariasai.github.io/assets/
pdf/ralm_position.pdf 

Question:  
https://bit.ly/
akari_ralm_lec  

Retrieval-augmented LMs can solve many issues e.g., hallucinations 

Various architectures (not just RAG) exist with different pros&cons

Jointly training retrieval-augmented LMs is important but hard

Many interesting research opportunities — let’s work together!

mailto:akari@cs.washington.edu
https://akariasai.github.io/
https://acl2023-retrieval-lm.github.io/
https://acl2023-retrieval-lm.github.io/
https://akariasai.github.io/assets/pdf/ralm_position.pdf
https://akariasai.github.io/assets/pdf/ralm_position.pdf
https://akariasai.github.io/assets/pdf/ralm_position.pdf
https://bit.ly/akari_ralm_lec
https://bit.ly/akari_ralm_lec
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