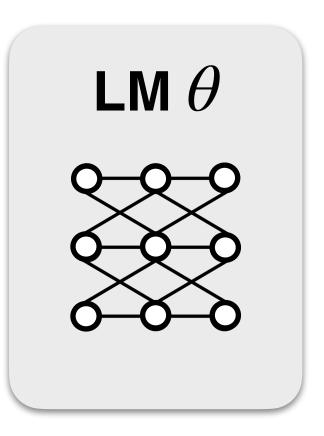
I I-667 Large Language Models: Methods and Applications

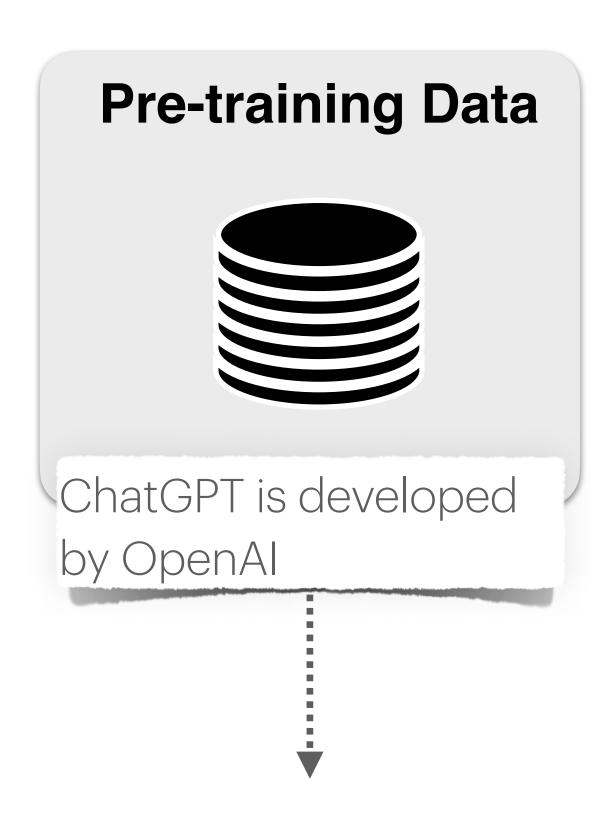
Retrieval and Retrieval-Augmented Generation

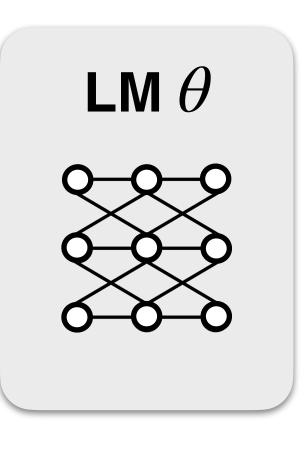
Akari Asai

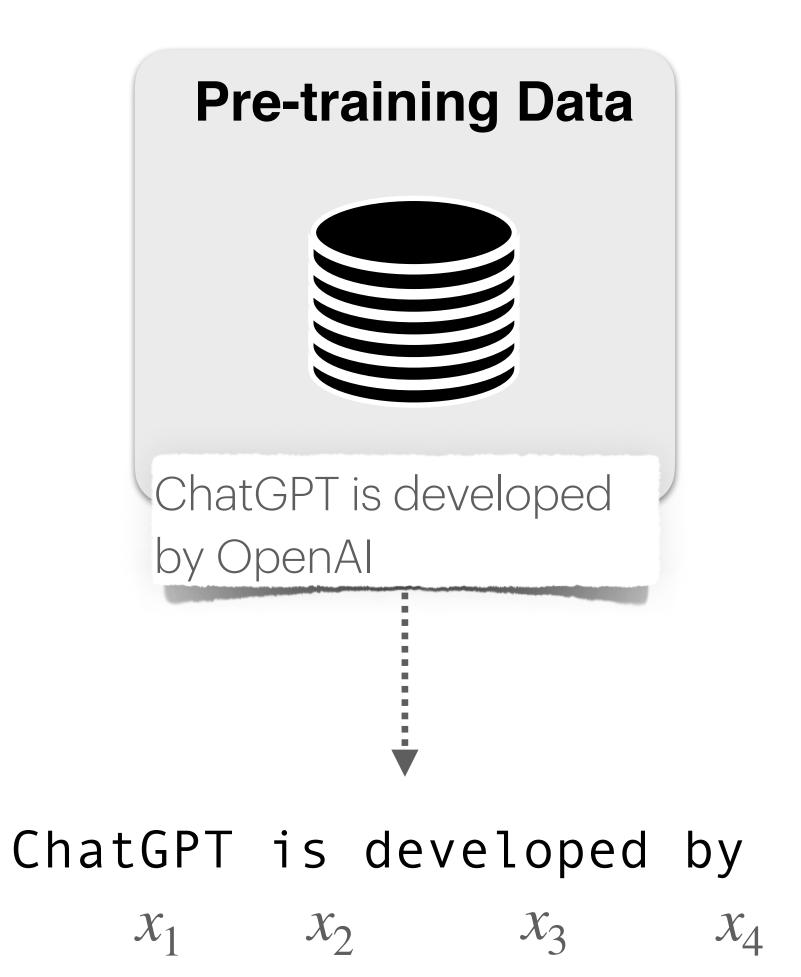
<u>aasai@andrew.cmu.edu</u> | <u>akaria@allenai.org</u> <u>https://akariasai.github.io/</u>

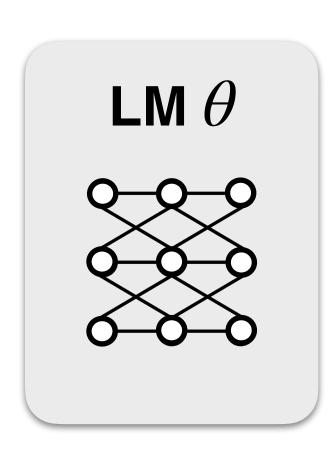
Slides adapted from

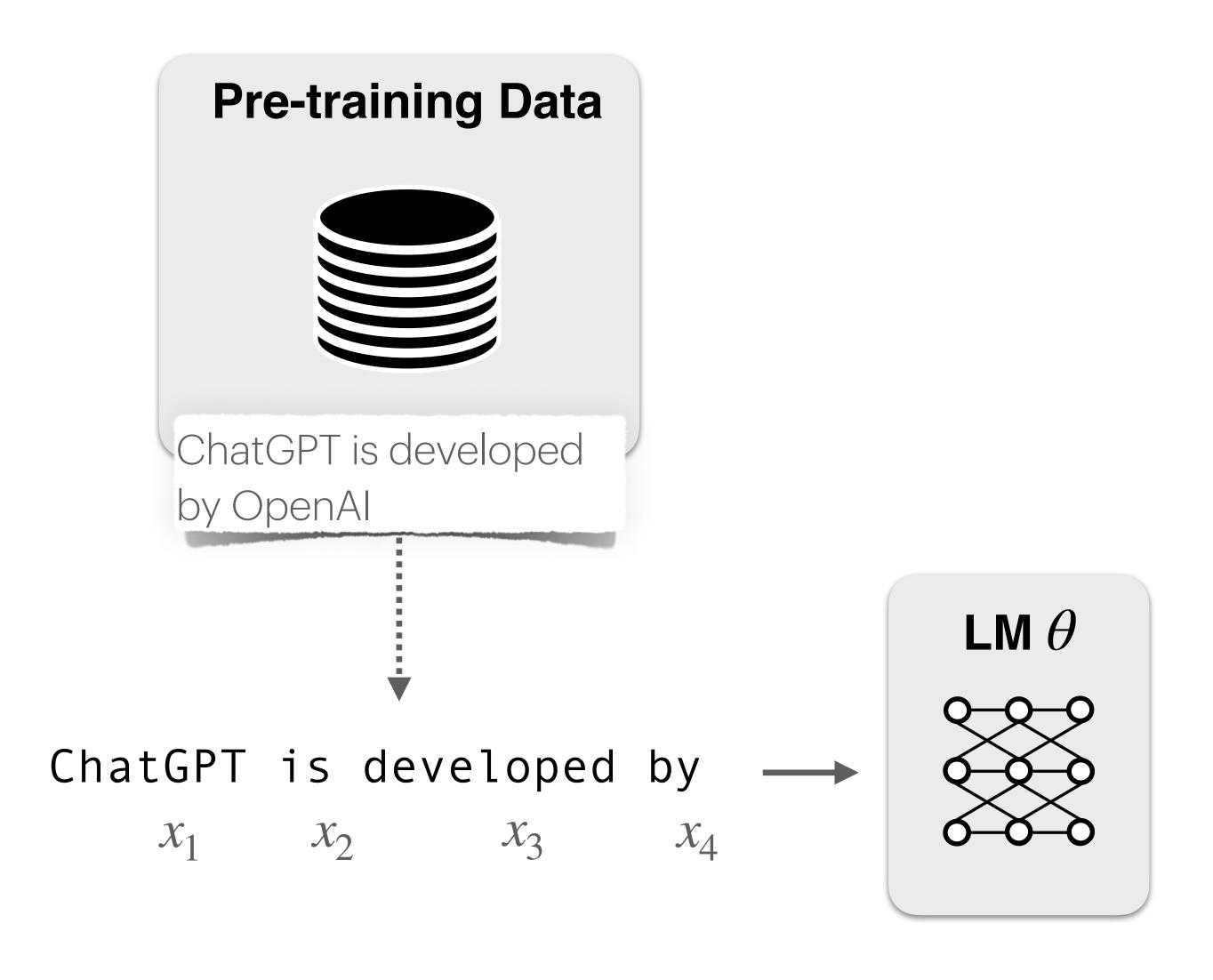


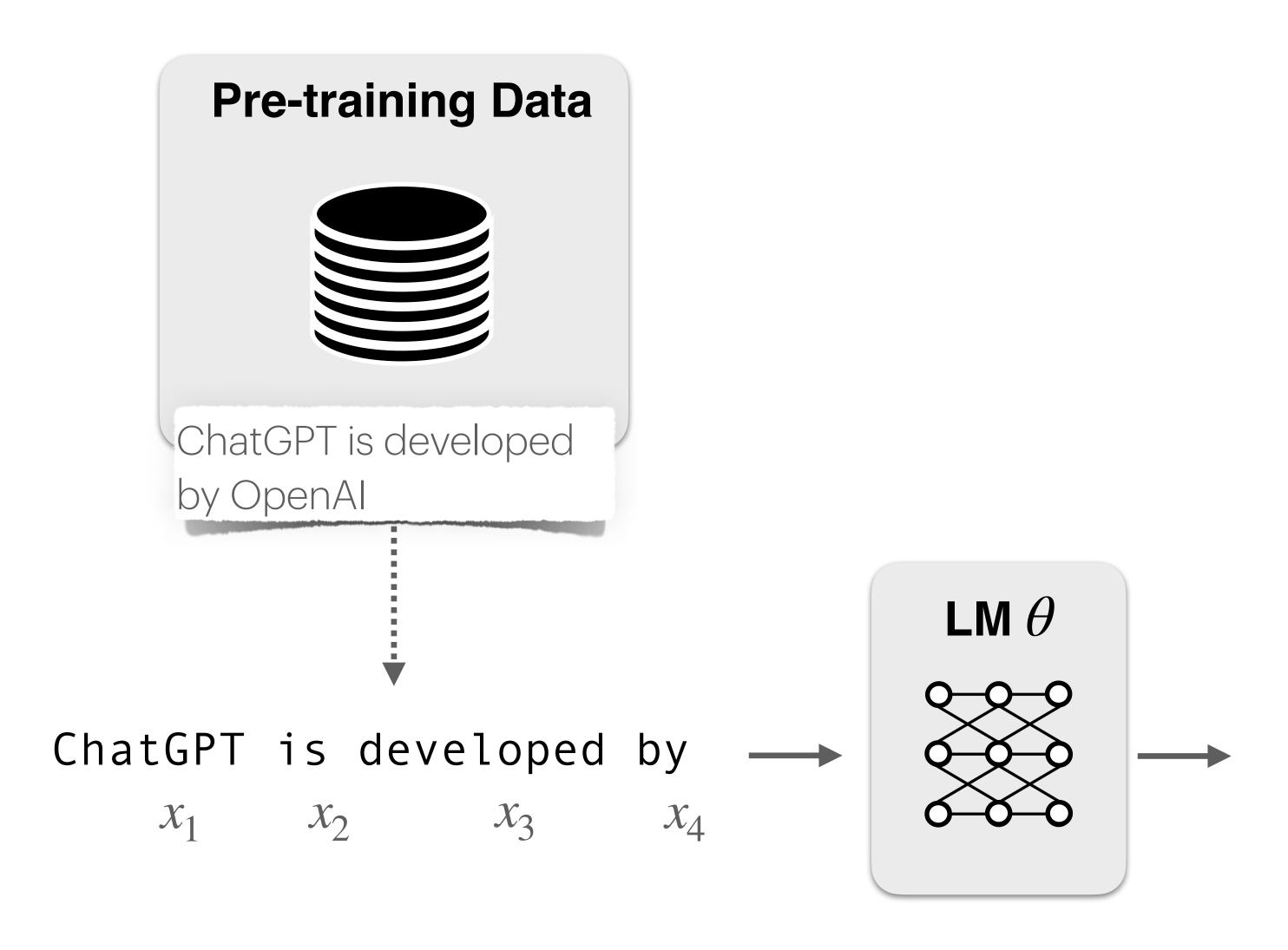


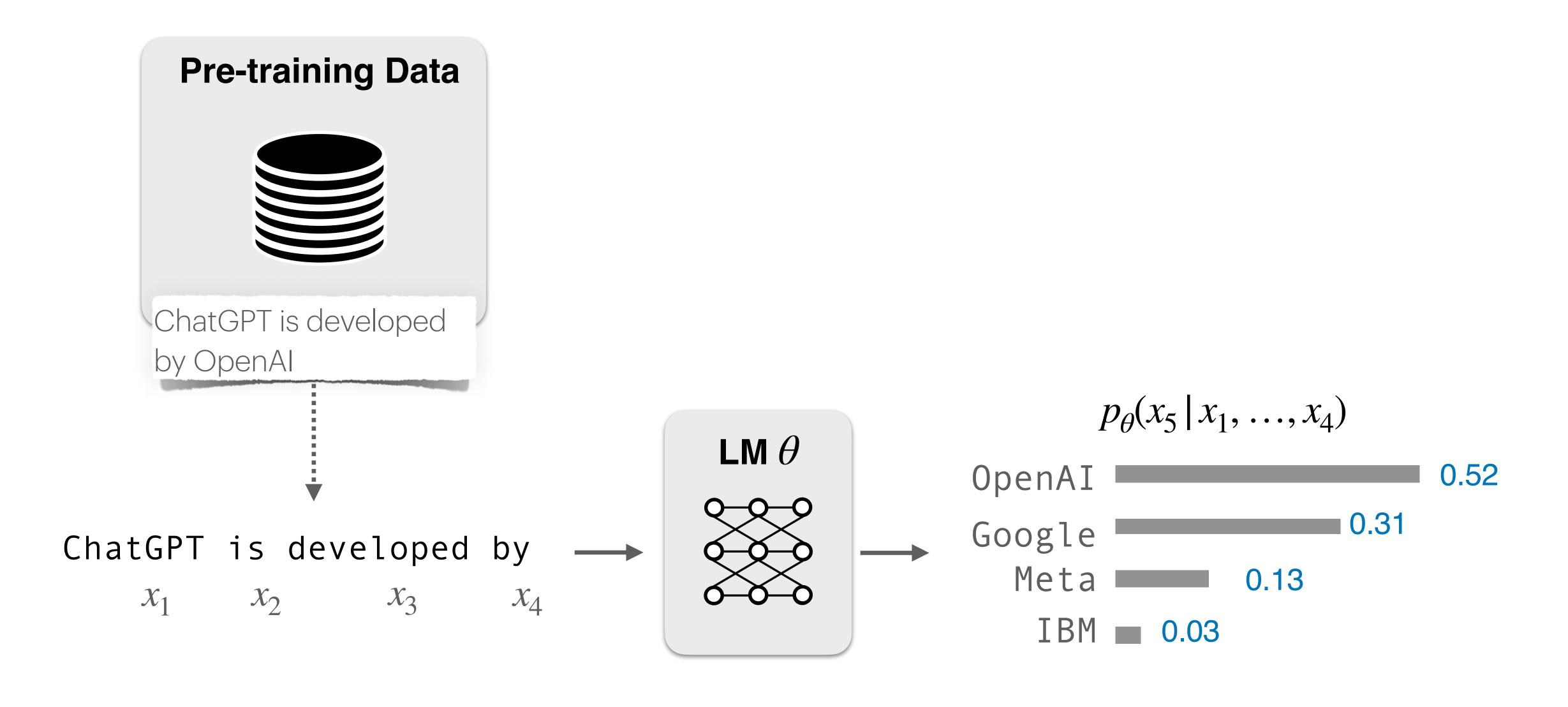




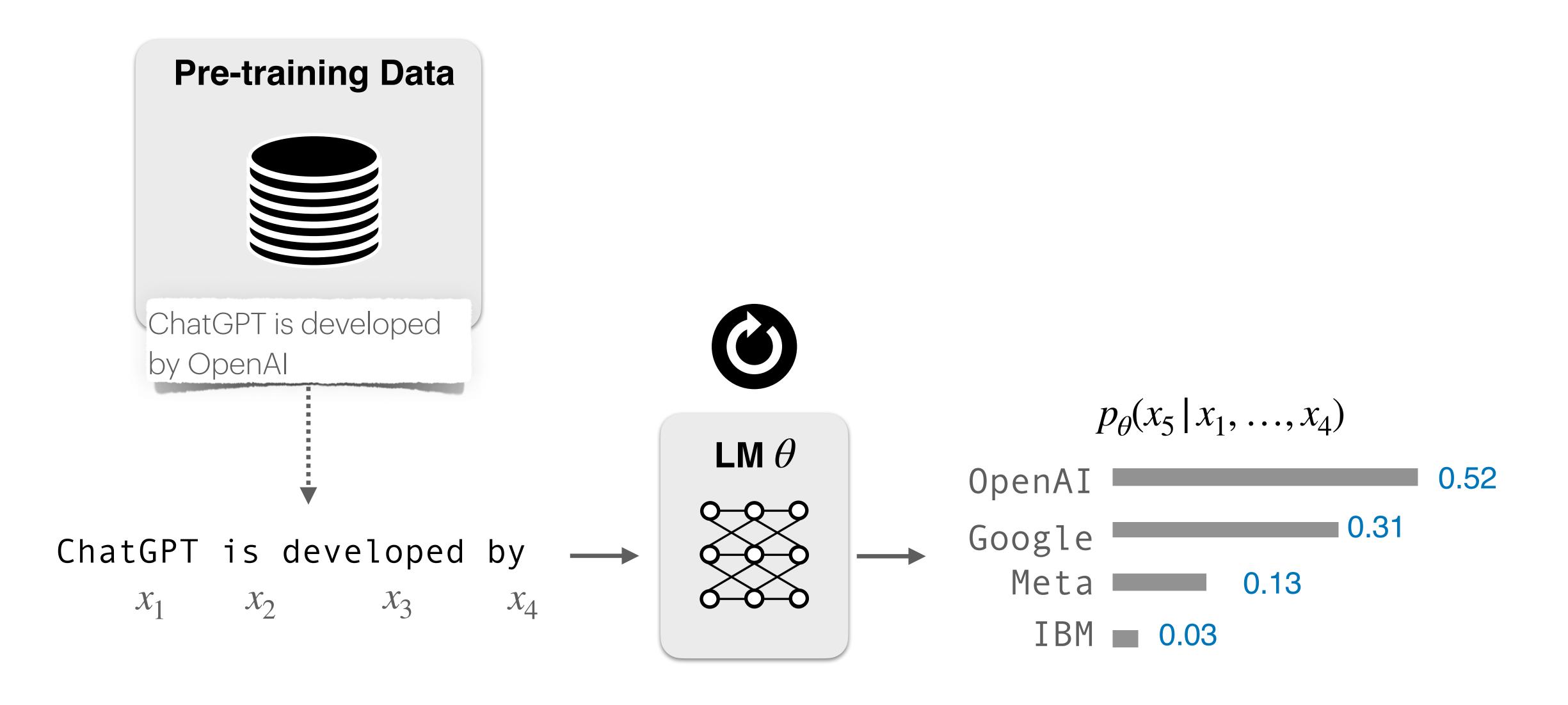




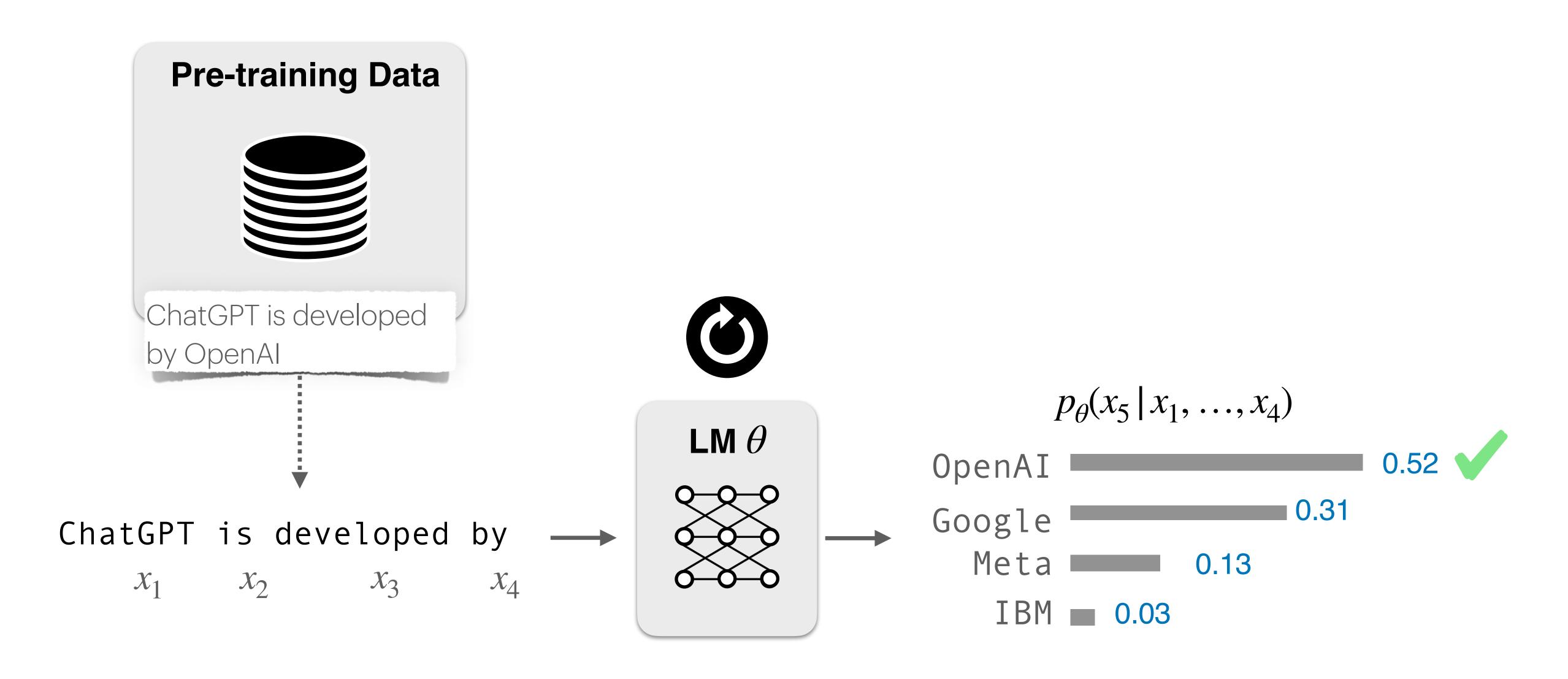




Introduction



Introduction



Explain Akari Asai's research, including her representative papers

(ChatGPT4o, February 8, 2025)

Explain Akari Asai's research, including her representative papers

(ChatGPT4o, February 8, 2025)

Akari Asai is a researcher in natural language processing (NLP) and artificial intelligence (AI), particularly focusing on open-domain question answering, knowledge retrieval, and multilingual NLP. Her work primarily aims to improve how machines retrieve, understand, and reason over textual information efficiently.

Explain Akari Asai's research, including her representative papers

(ChatGPT4o, February 8, 2025)

Akari Asai is a researcher in natural language processing (NLP) and artificial intelligence (AI), particularly focusing on open-domain question answering, knowledge retrieval, and multilingual NLP. Her work primarily aims to improve how machines retrieve, understand, and reason over textual information efficiently.

Representative Papers:

- 1. "Learning to Retrieve Passages without Supervision" (NeurlPS 2022)
 - Introduces a method for training retrieval models without labeled data, improving opendomain QA efficiency.
 - Leverages contrastive learning to align questions and relevant passages.
- 2. "One Question, Many Answers: A Retrieval-based Multimodal QA Dataset" (EMNLP 2022)

Explain Akari Asai's research, including her representative papers

(ChatGPT4o, February 8, 2025)

Akari Asai is a researcher in natural language processing (NLP) and artificial intelligence (AI), particularly focusing on open-domain question answering, knowledge retriev

Her work primarily aims to improve how machines retrieve, understand, and information efficiently.

Ori Ram Gal Shack information efficiently.

Learning to Retrieve Passages without Supervision

Ori Ram Gal Shachaf Omer Levy Jonathan Berant Amir Globerson

Blavatnik School of Computer Science, Tel Aviv University ori.ram@cs.tau.ac.il

Representative Papers:

- Not my paper
- Introduces a method for training retrieval models without labeled data, improving opendomain QA efficiency.
- Leverages contrastive learning to align questions and relevant passages.
- 2. "One Question, Many Answers: A Retrieval-based Multimodal QA Dataset" (EMNLP 2022)

Explain Akari Asai's research, including her representative papers

(ChatGPT4o, February 8, 2025)

Akari Asai is a researcher in natural language processing (NLP) and artificial intelligence (AI), particularly focusing on open-domain question answering, knowledge retriev

Her work primarily aims to improve how machines retrieve, understand, and information efficiently.

Learning to Retrieve Passages without Supervision

Ori Ram Gal Shachaf Omer Levy Jonathan Berant Amir Globerson

Blavatnik School of Computer Science, Tel Aviv University ori.ram@cs.tau.ac.il

Representative Papers:

NAACL 2022

- Introduces a method for training retrieval models without labeled data, improving opendomain QA efficiency.
- Leverages contrastive learning to align questions and relevant passages.
- 2. "One Question, Many Answers: A Retrieval-based Multimodal QA Dataset" (EMNLP 2022)

Explain Akari Asai's research, including her representative papers

(ChatGPT4o, February 8, 2025)

Akari Asai is a researcher in natural language processing (NLP) and artificial intelligence (AI), particularly focusing on open-domain question answering, knowledge retriev

Her work primarily aims to improve how machines retrieve, understand, and information efficiently.

Learning to Retrieve Passages without Supervision

Ori Ram Gal Shachaf Omer Levy Jonathan Berant Amir Globerson

Blavatnik School of Computer Science, Tel Aviv University ori.ram@cs.tau.ac.il

Representative Papers:

NAACL 2022

- Not my paper
- Introduces a method for training retrieval models without labeled data, improving opendomain QA efficiency.
- **Venue** is wrong

- Leverages contrastive learning to align questions and relevant passages.
- 2. "One Question, Many Answers: A Retrieval-based Multimodal QA Dataset" (EMNLP 2022)

Explain Akari Asai's research, including her representative papers

(ChatGPT4o, February 8, 2025)

Akari Asai is a researcher in natural language processing (NLP) and artificial intelligence (AI), particularly focusing on open-domain question answering, knowledge retriev

Her work primarily aims to improve how machines retrieve, understand, and information efficiently.

Learning to Retrieve Passages without Supervision

Ori Ram Gal Shachaf Omer Levy Jonathan Berant Amir Globerson

Blavatnik School of Computer Science, Tel Aviv University ori.ram@cs.tau.ac.il

Representative Papers:

NAACL 2022

- Not my paper
- Introduces a method for training retrieval models without labeled data, improving opendomain QA efficiency.
- **Venue** is wrong

- Leverages contrastive learning to align questions and relevant passages.
- 2. "One Question, Many Answers: A Retrieval-based Multimodal QA Dataset" (EMNLP 2022)

Explain Akari Asai's research, including her representative papers

(ChatGPT4o, February 8, 2025)

Akari Asai is a researcher in natural language processing (NLP) and artificial intelligence (AI), particularly focusing on open-domain question answering, knowledge retriev

Her work primarily aims to improve how machines retrieve, understand, and information efficiently.

Learning to Retrieve Passages without Supervision

Ori Ram Gal Shachaf Omer Levy Jonathan Berant Amir Globerson

Blavatnik School of Computer Science, Tel Aviv University ori.ram@cs.tau.ac.il

Representative Papers:

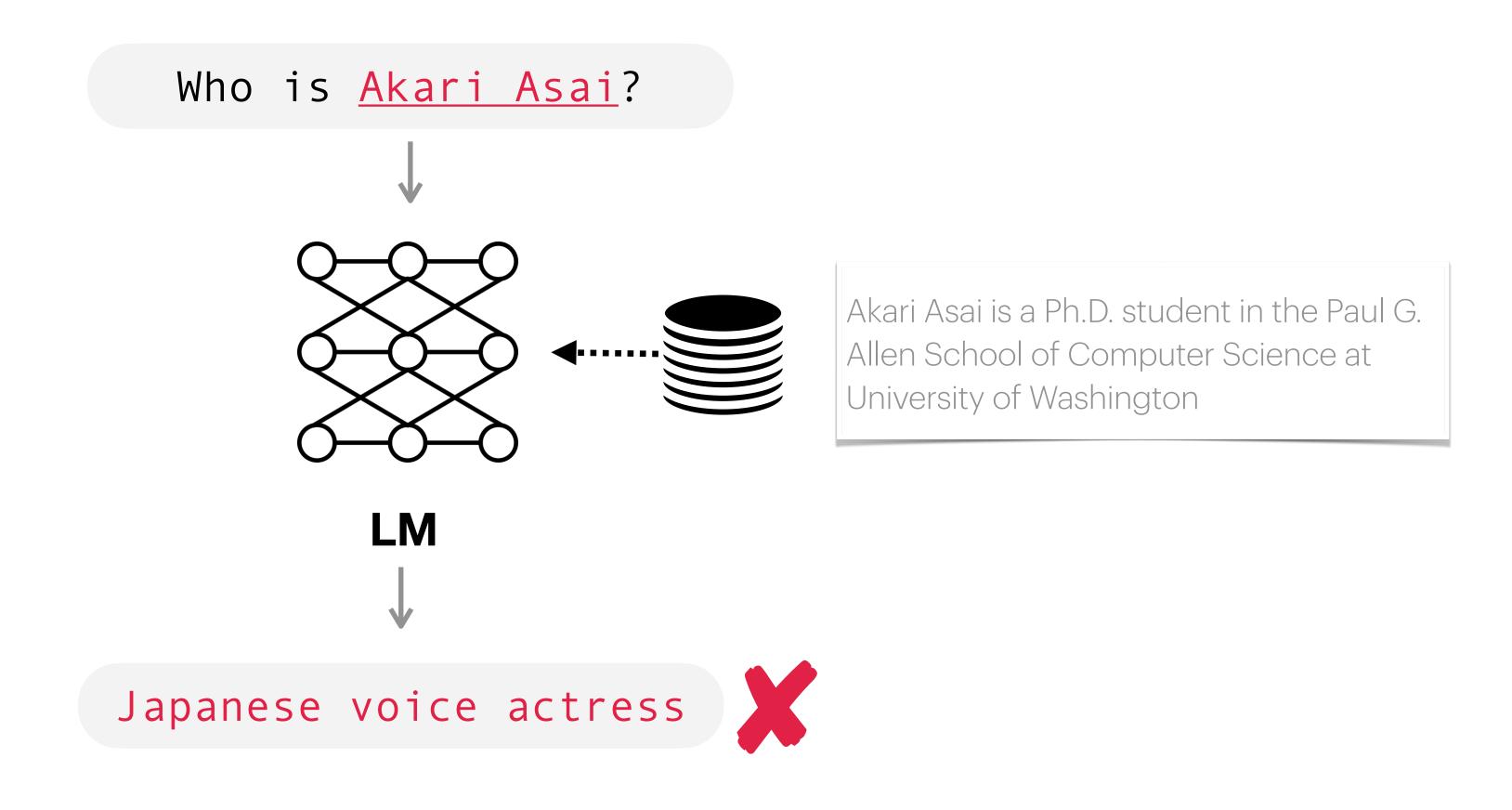
NAACL 2022

1. "Learning to Retrieve Passages without Supervision" (NeurIPS 2022)

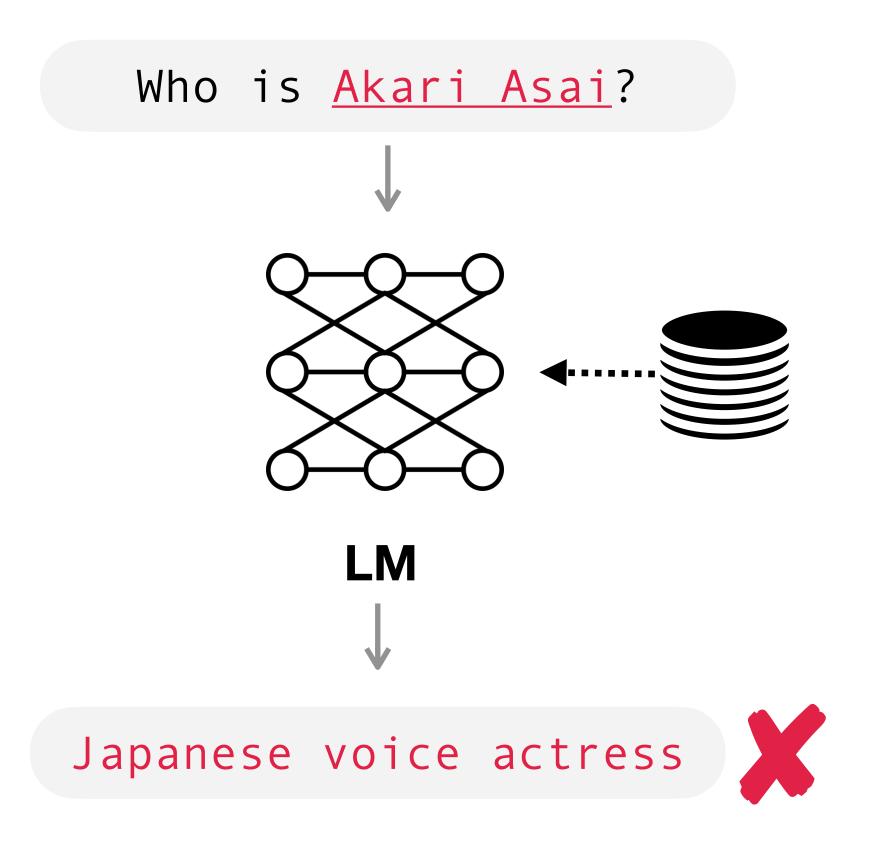
- Not my paper
- Introduces a method for training retrieval models without labeled data, improving opendomain QA efficiency.
- **Venue** is wrong

- Leverages contrastive learning to align questions and relevant passages.
- 2. "One Question, Many Answers: A Retrieval-based Multimodal QA Dataset" (EMNLP 2022)

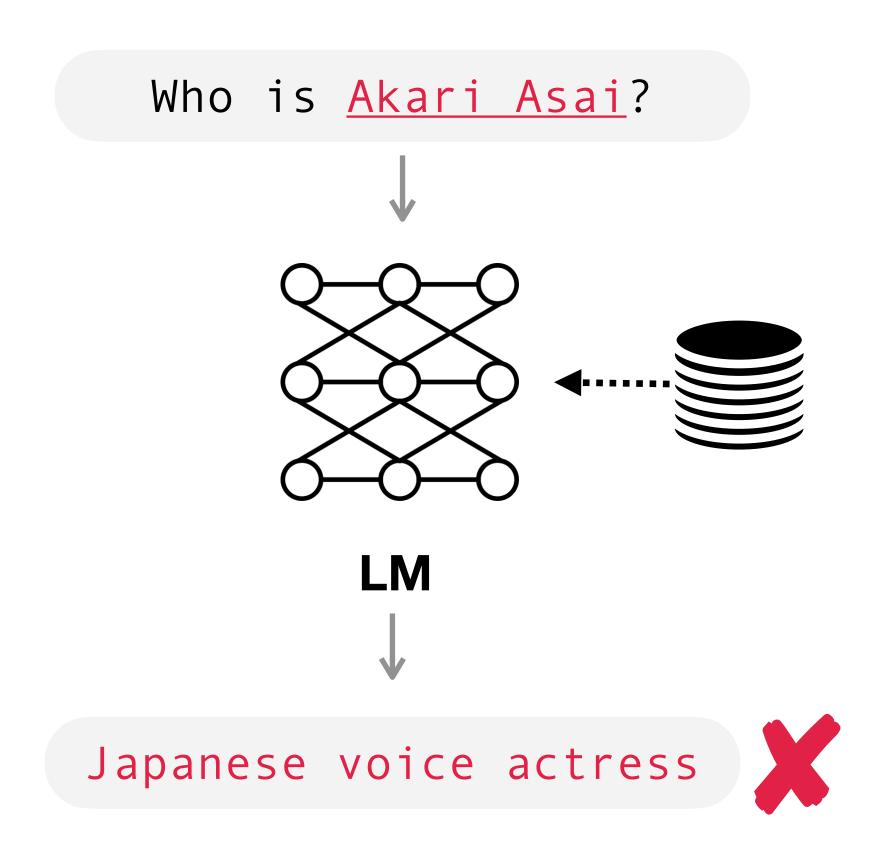
LMs struggle in long-tail knowledge



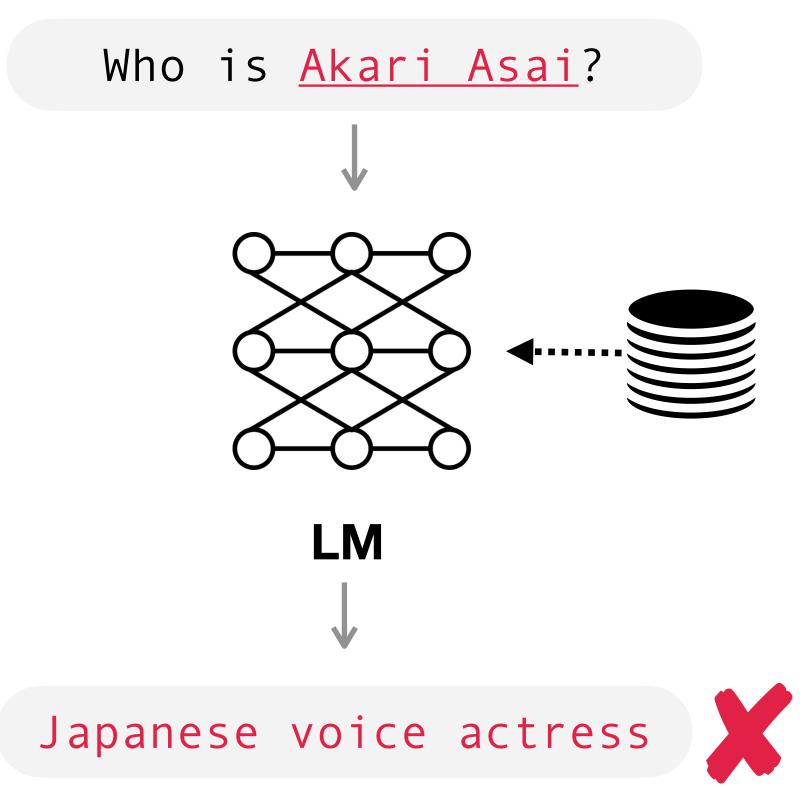
Introduction



Introduction



Who is <u>Akari Asai</u>?

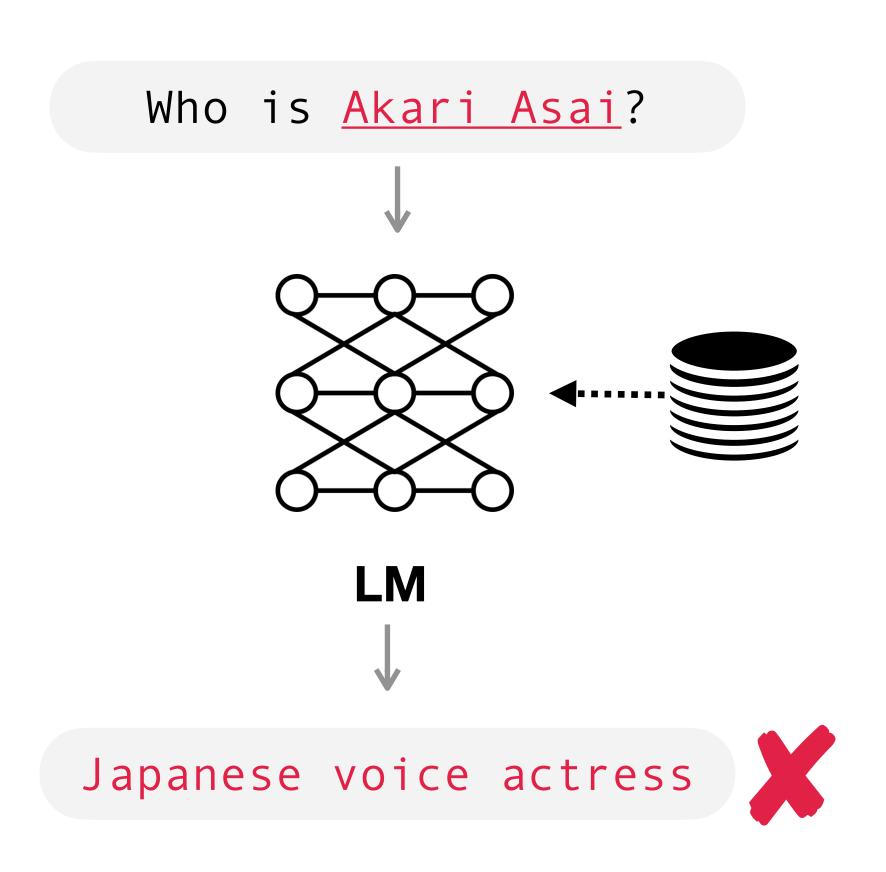


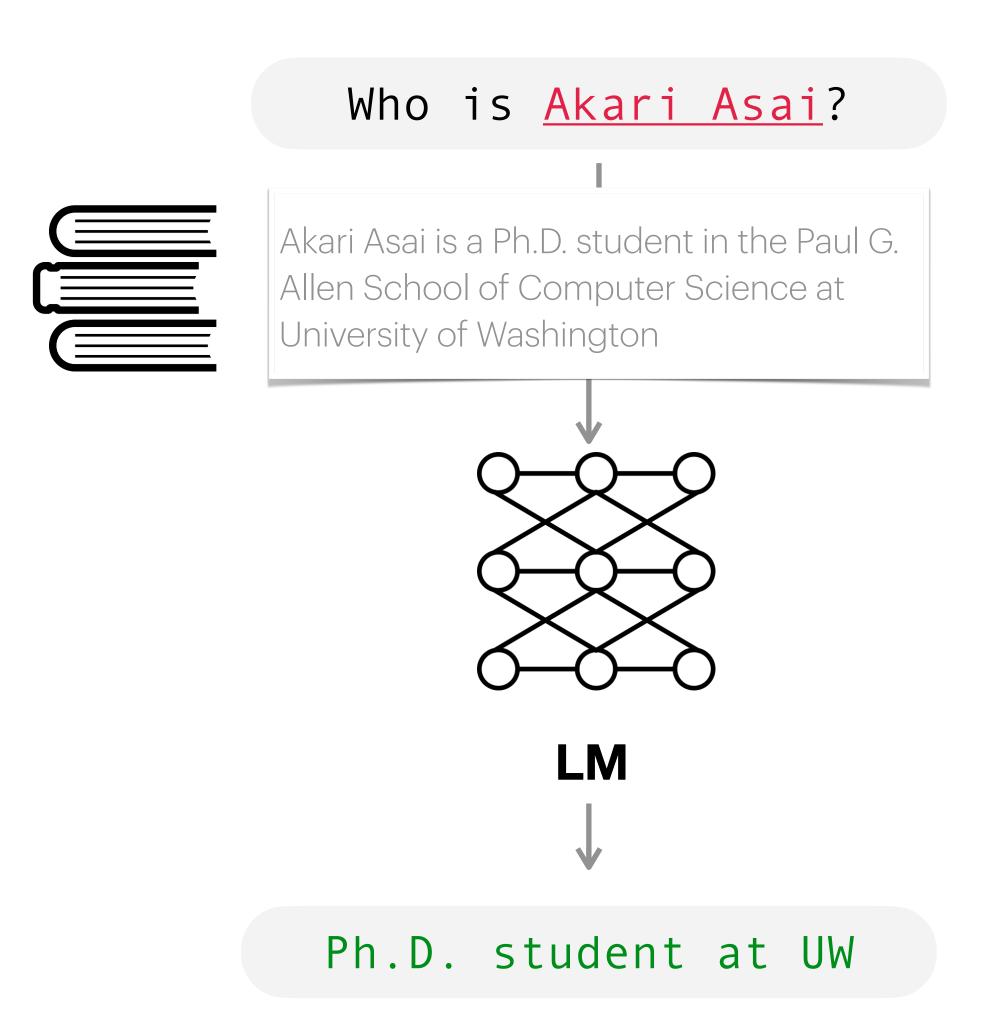
Introduction

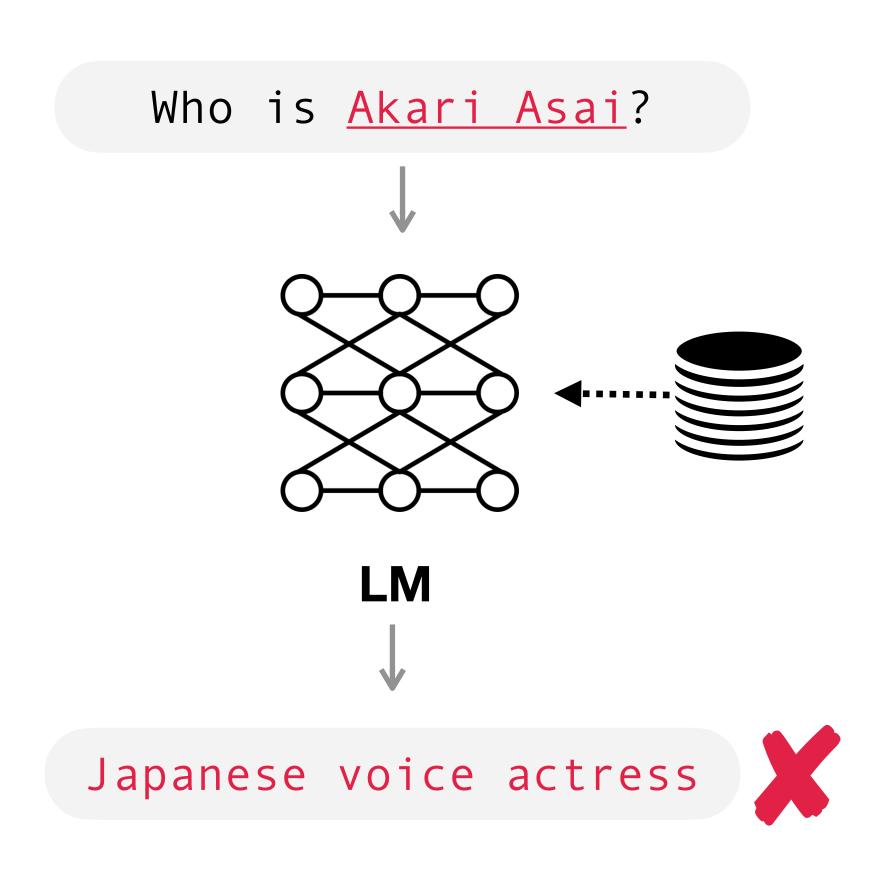
Who is <u>Akari Asai</u>?

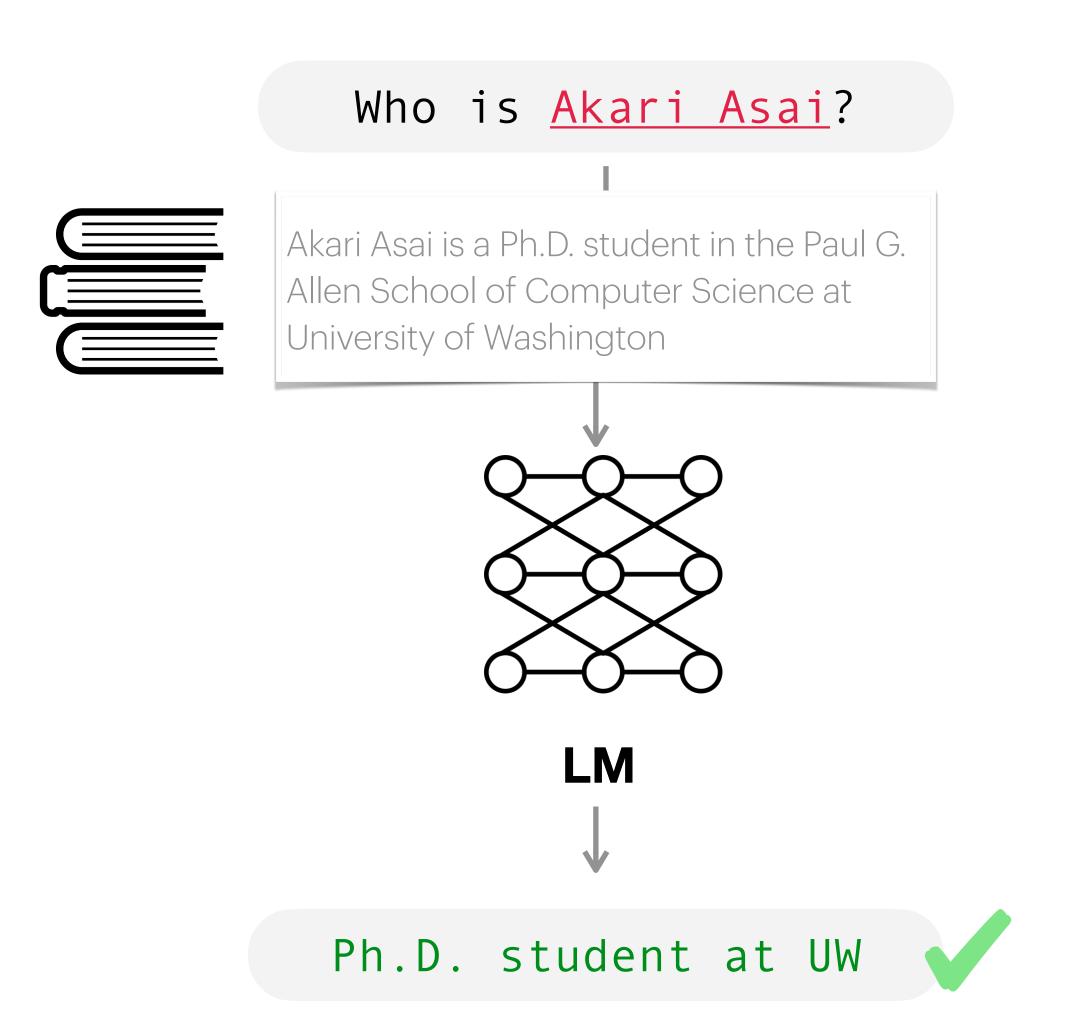


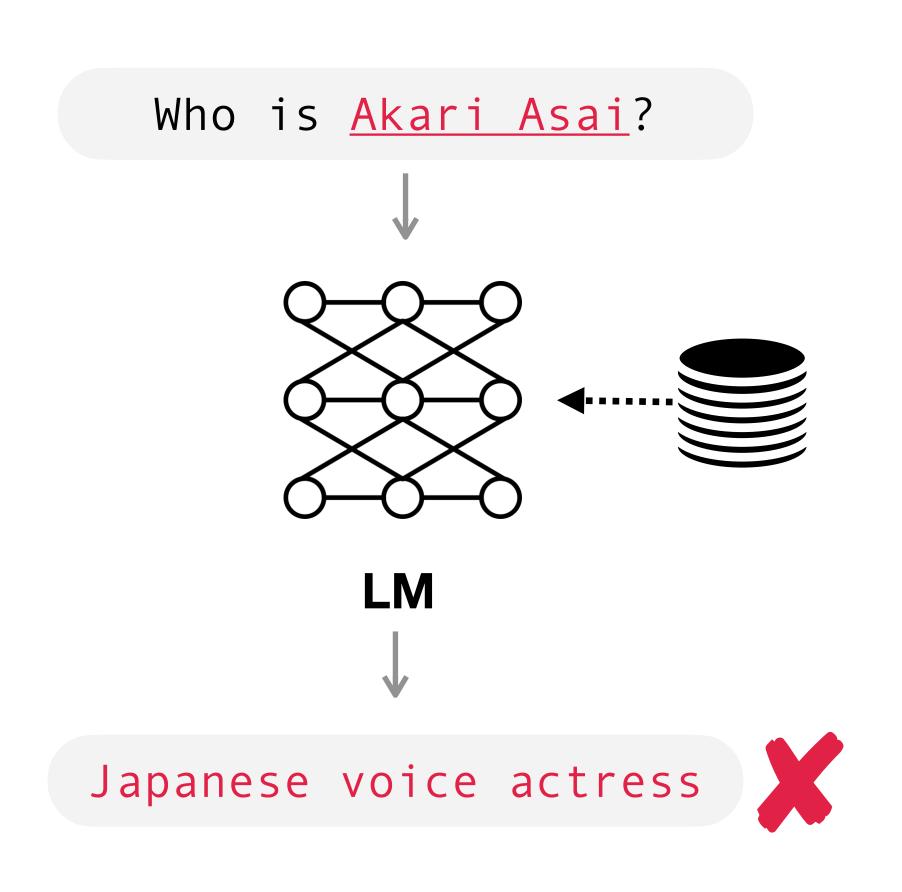
Akari Asai is a Ph.D. student in the Paul G. Allen School of Computer Science at University of Washington



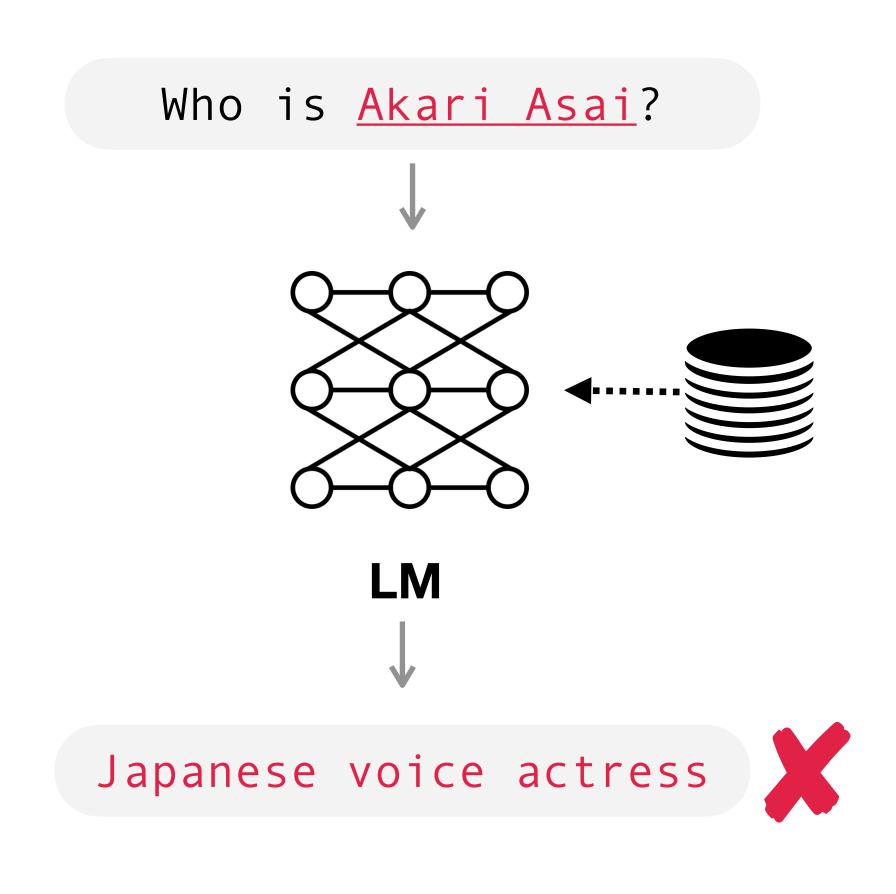


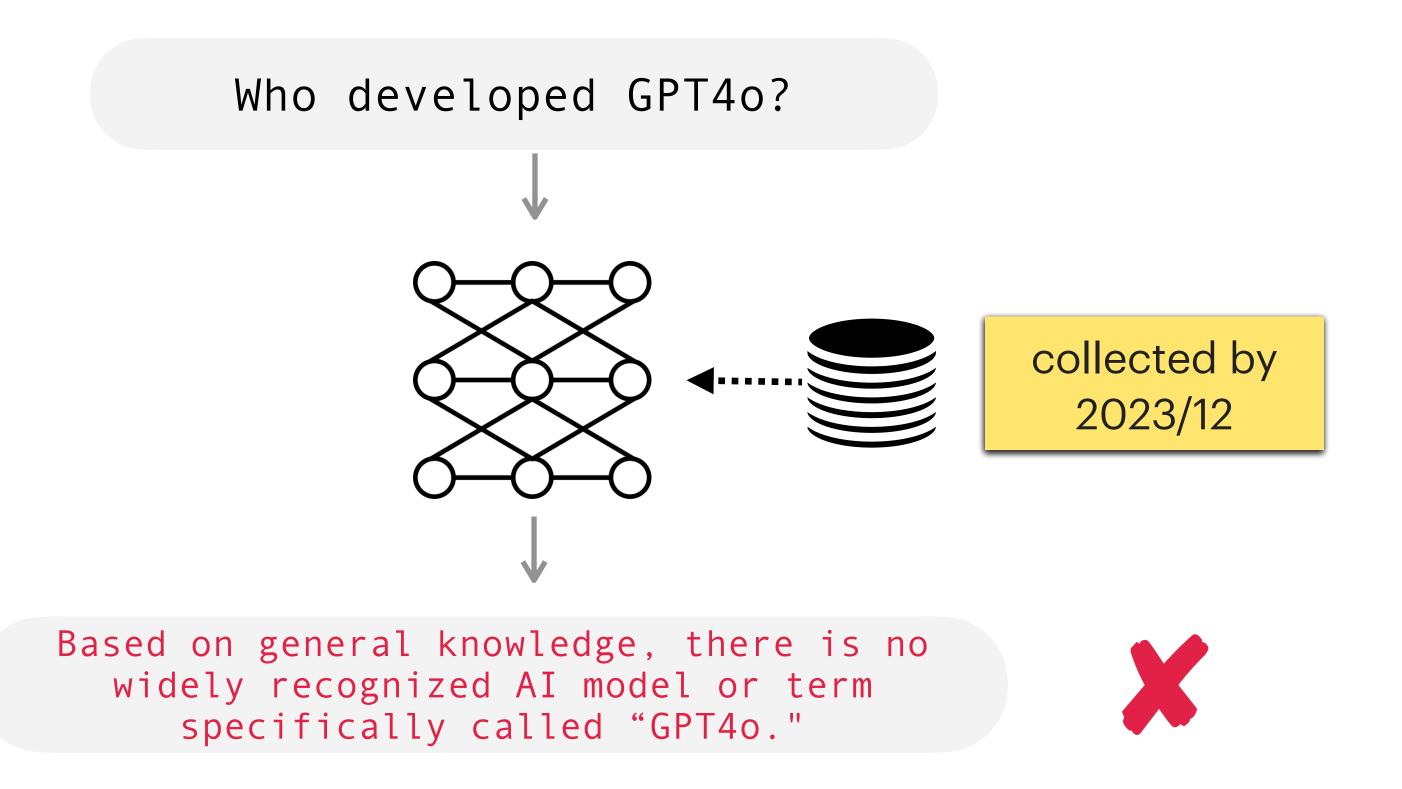


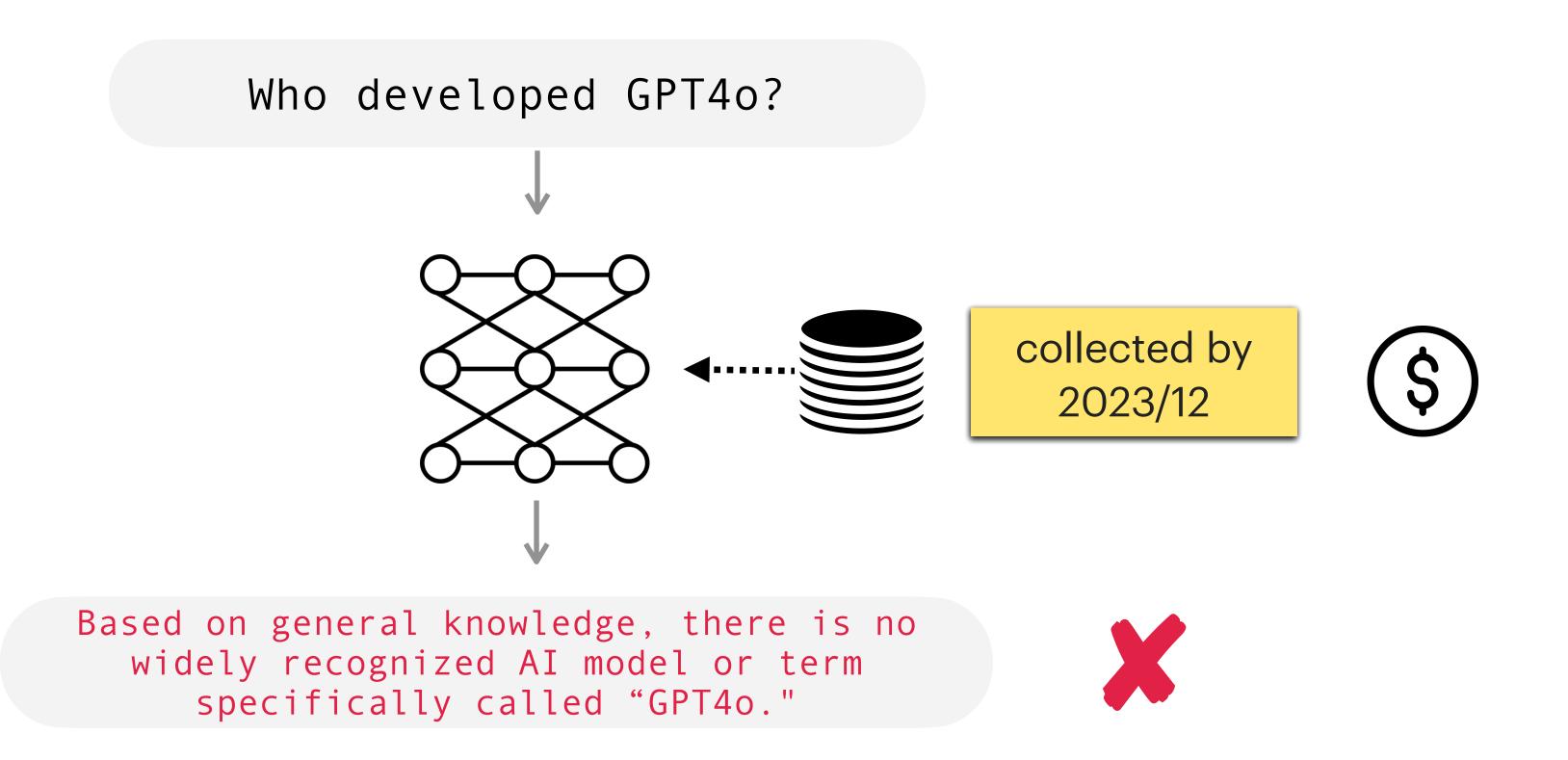


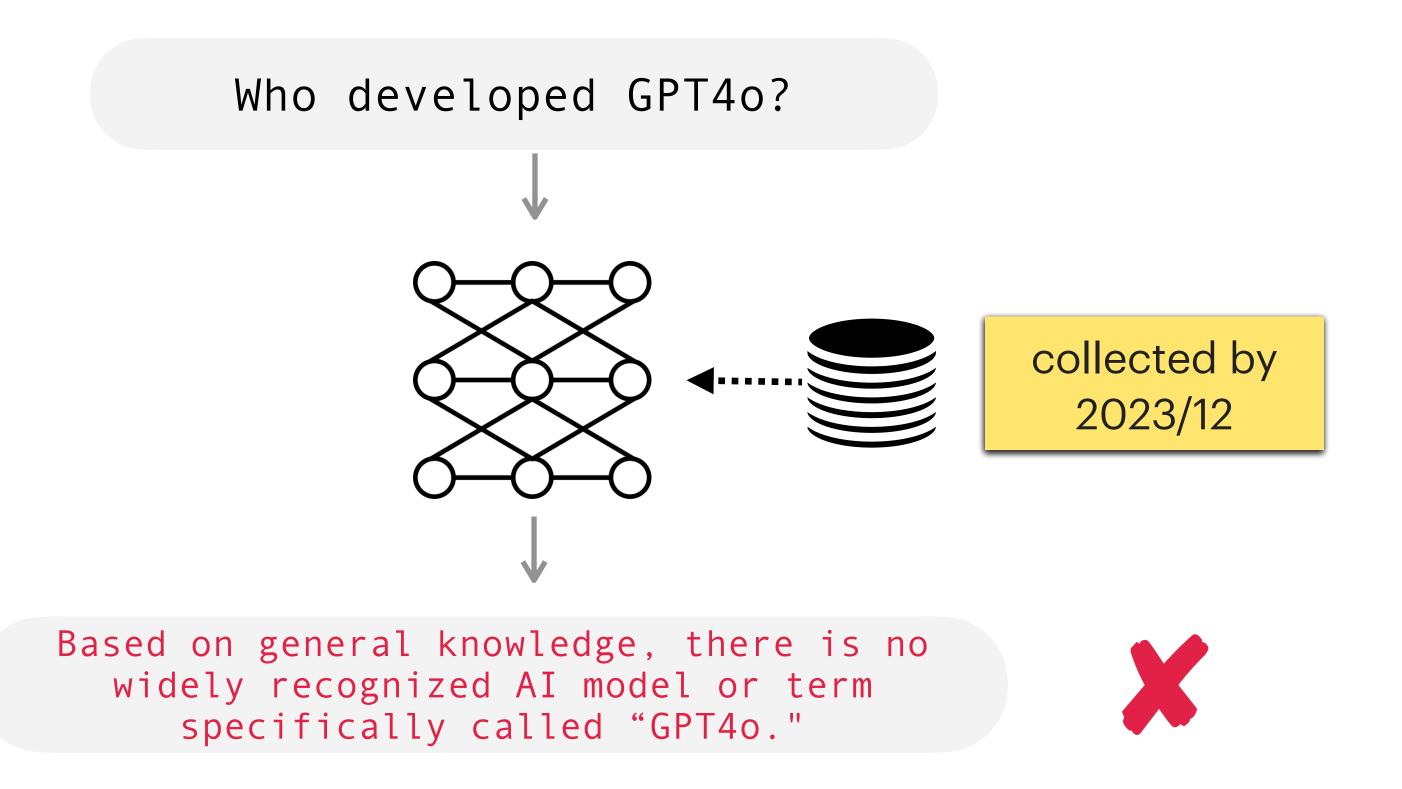


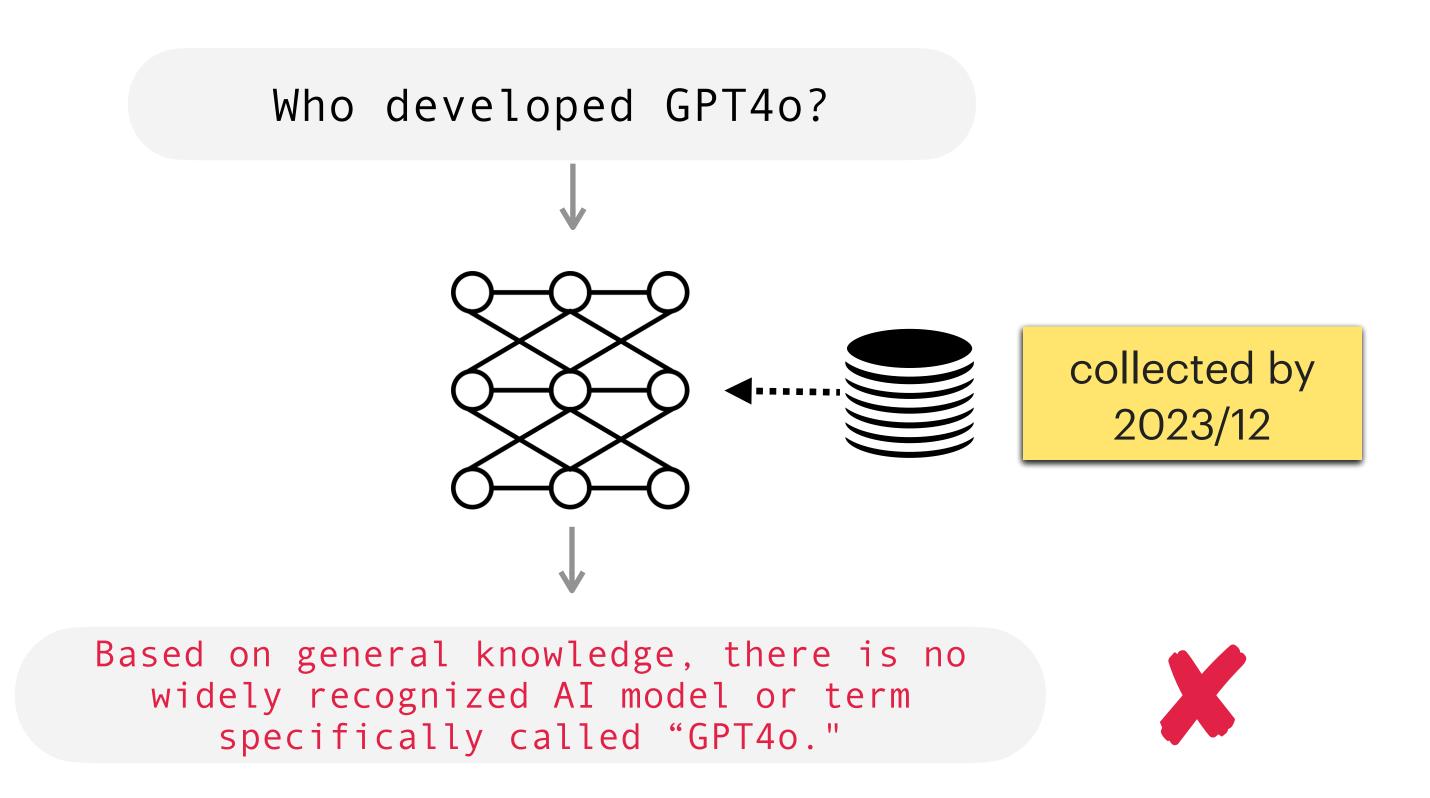




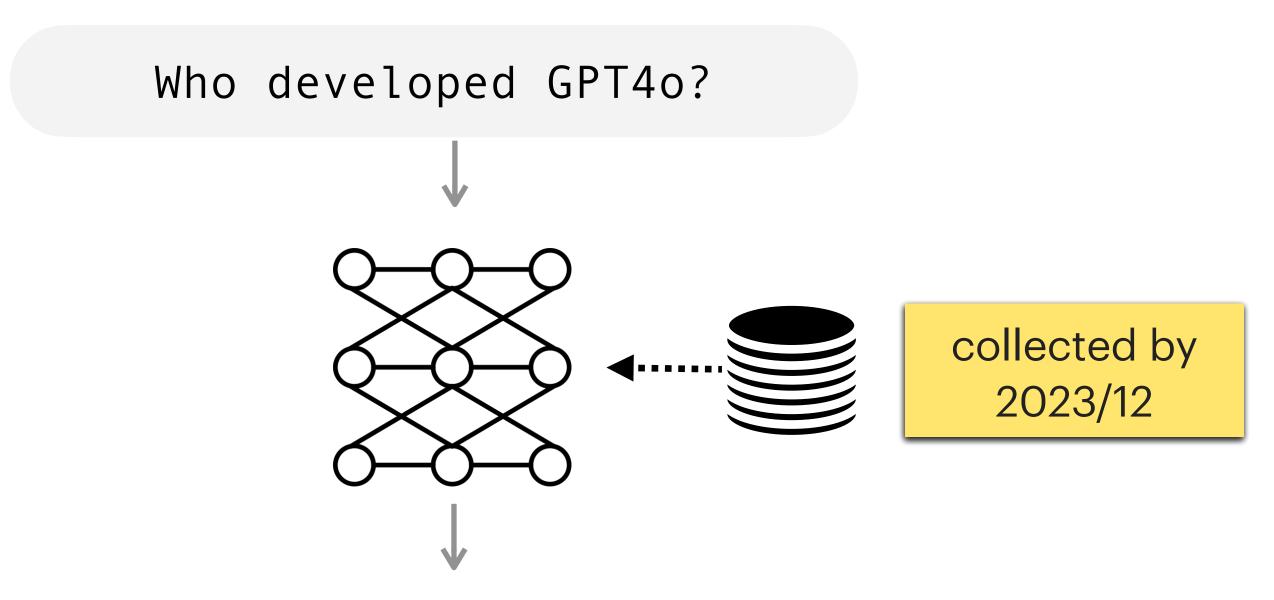




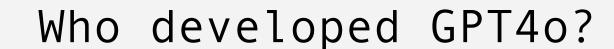




Who developed GPT4o?

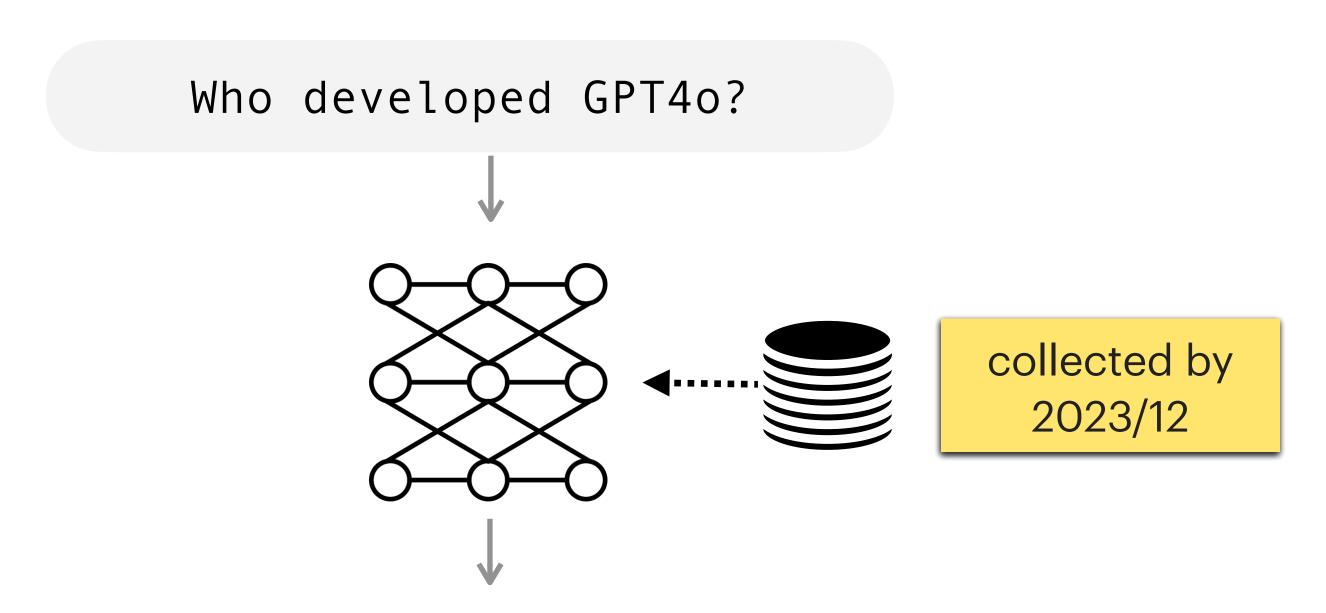


Based on general knowledge, there is no widely recognized AI model or term specifically called "GPT4o."

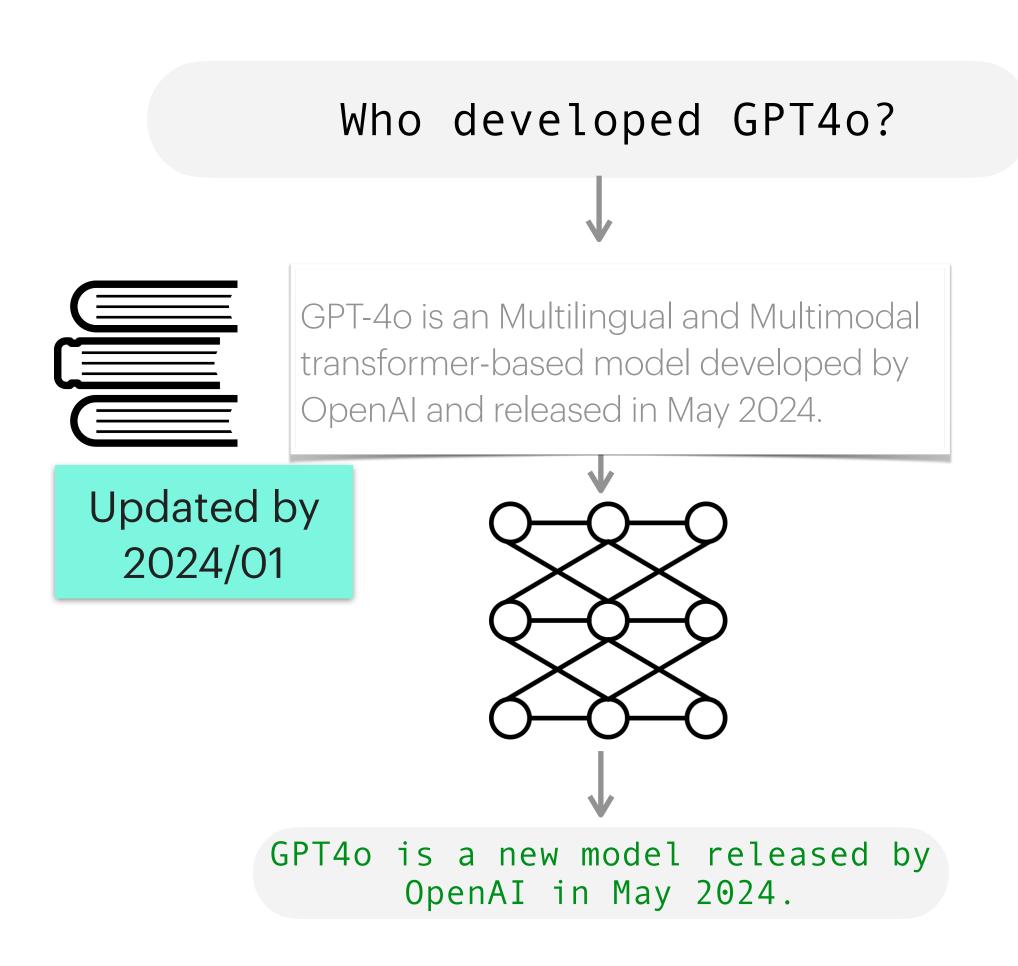


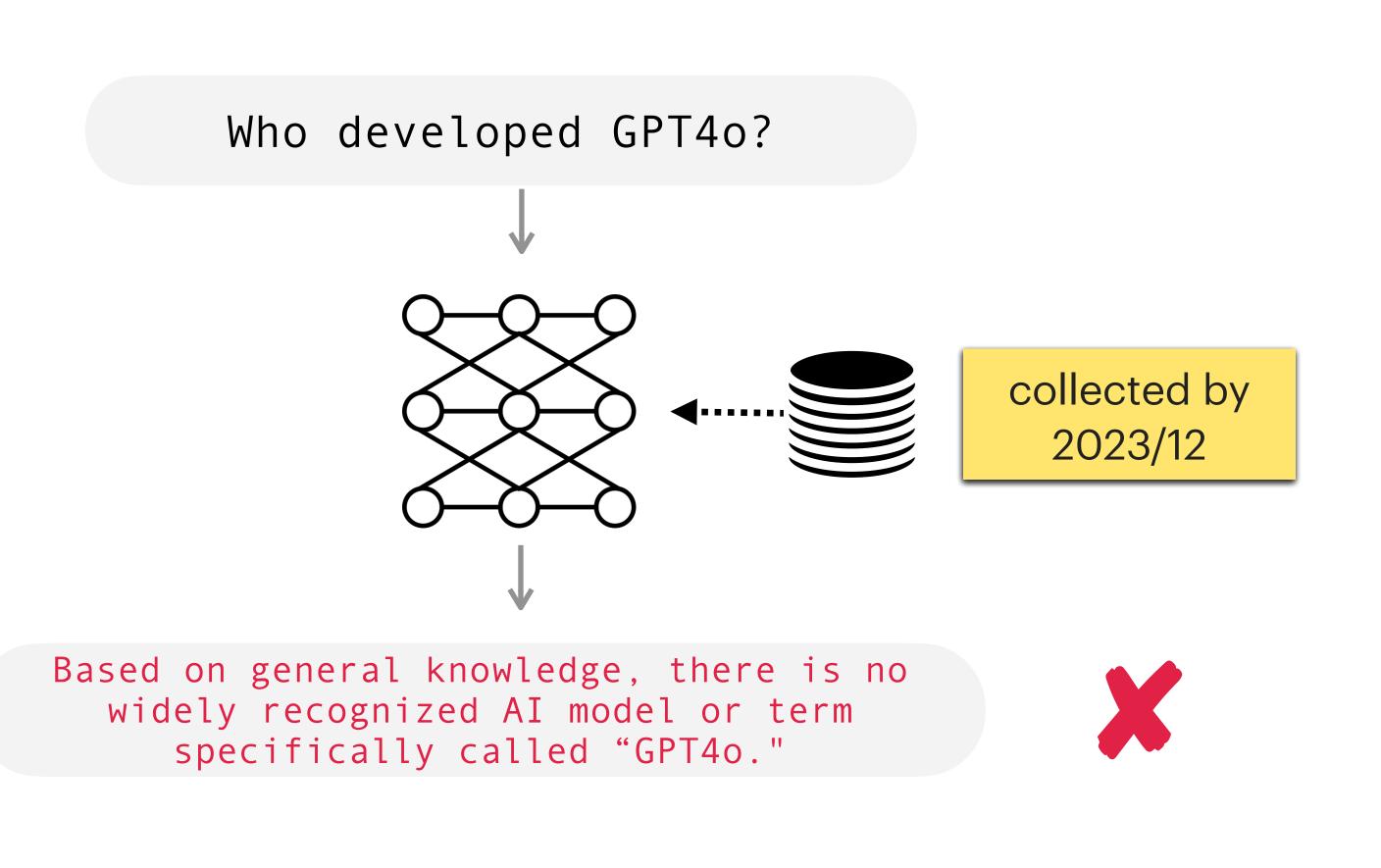
GPT-40 is an Multilingual and Multimodal transformer-based model developed by OpenAI and released in May 2024.

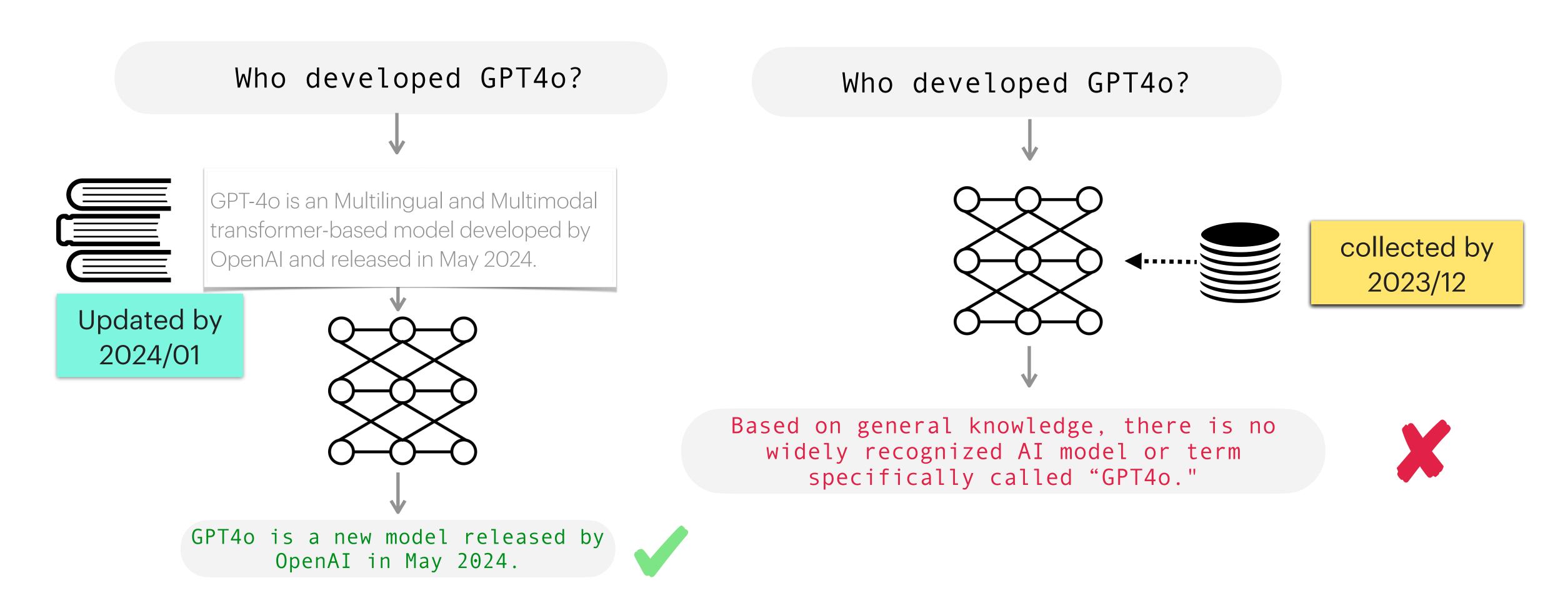
Updated by 2024/01

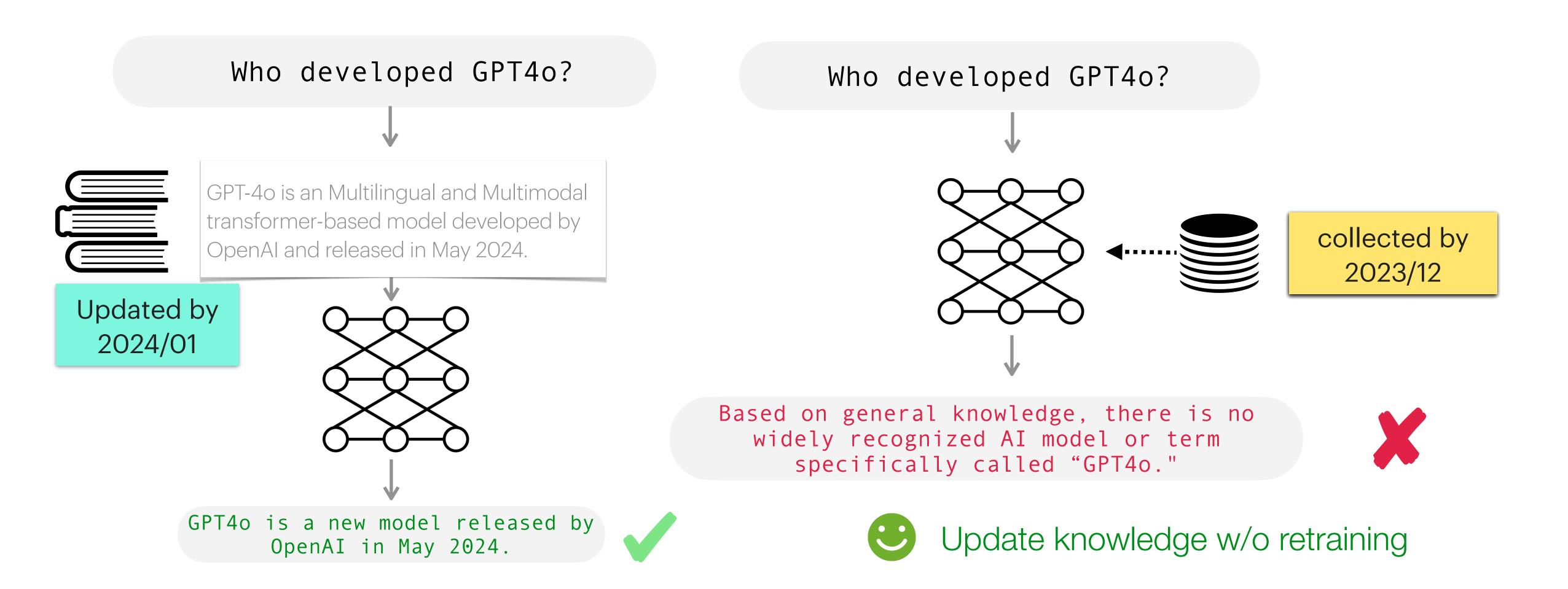


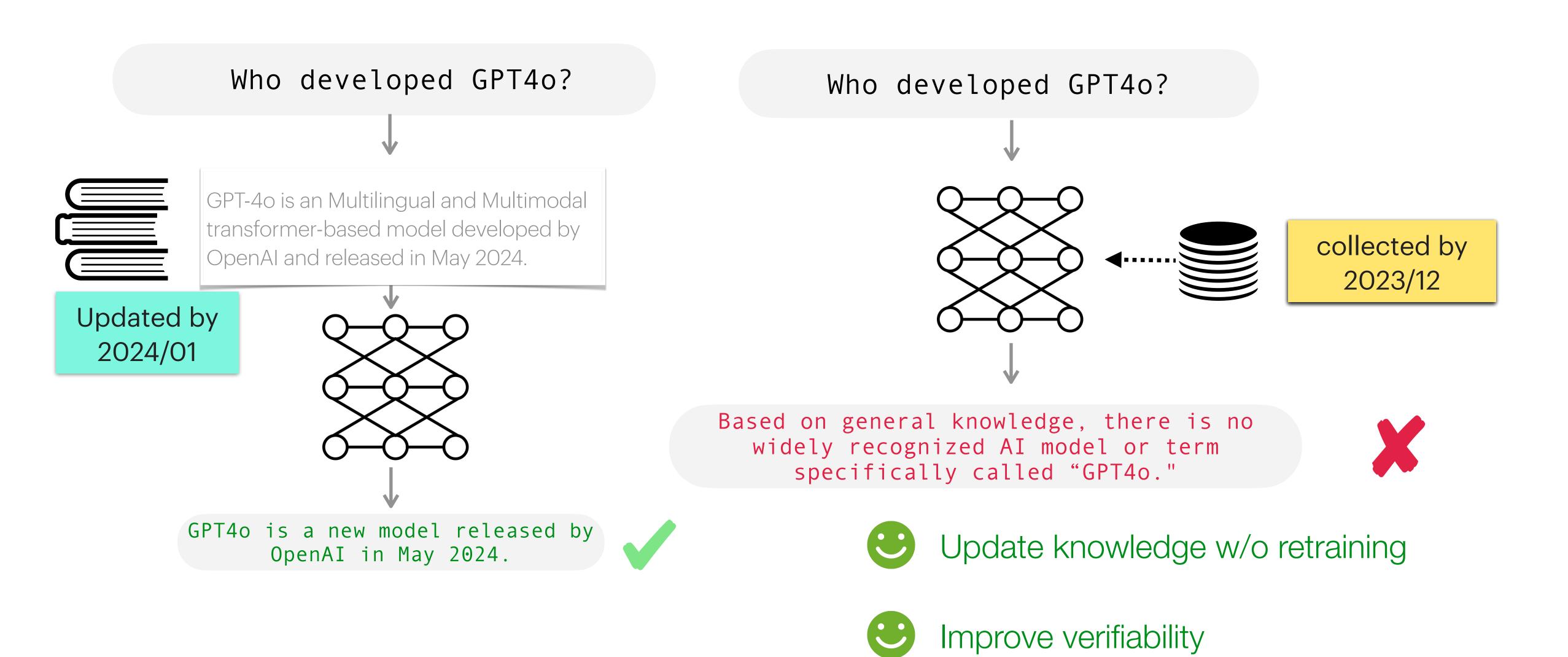
Based on general knowledge, there is no widely recognized AI model or term specifically called "GPT4o."

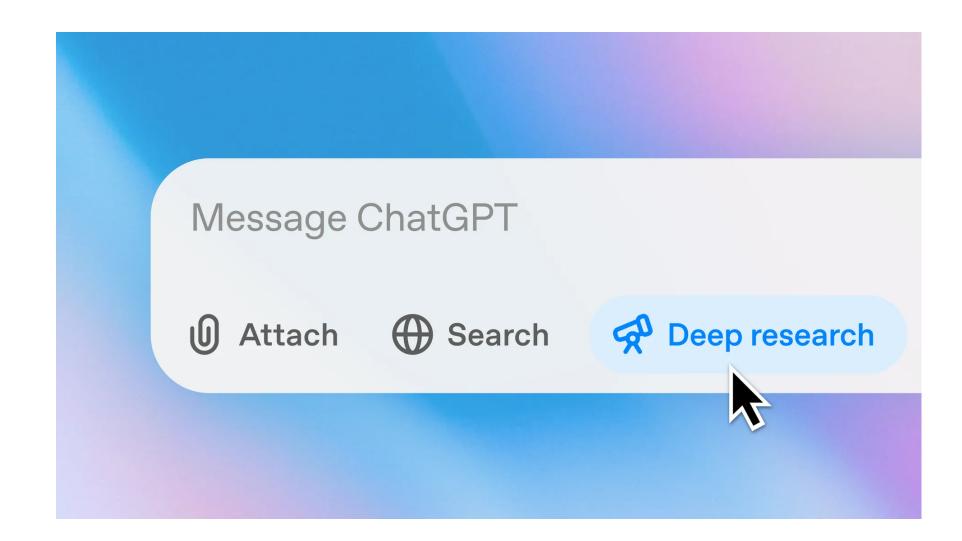




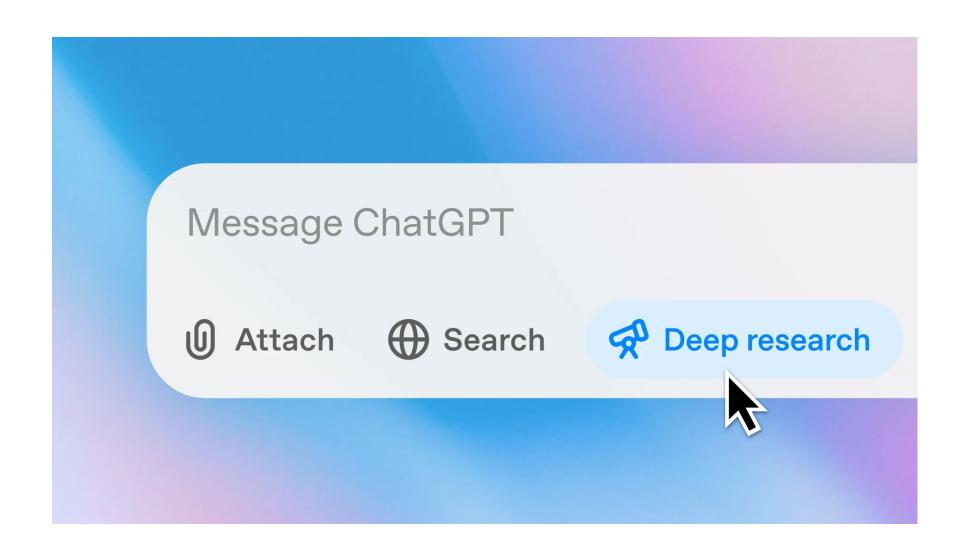




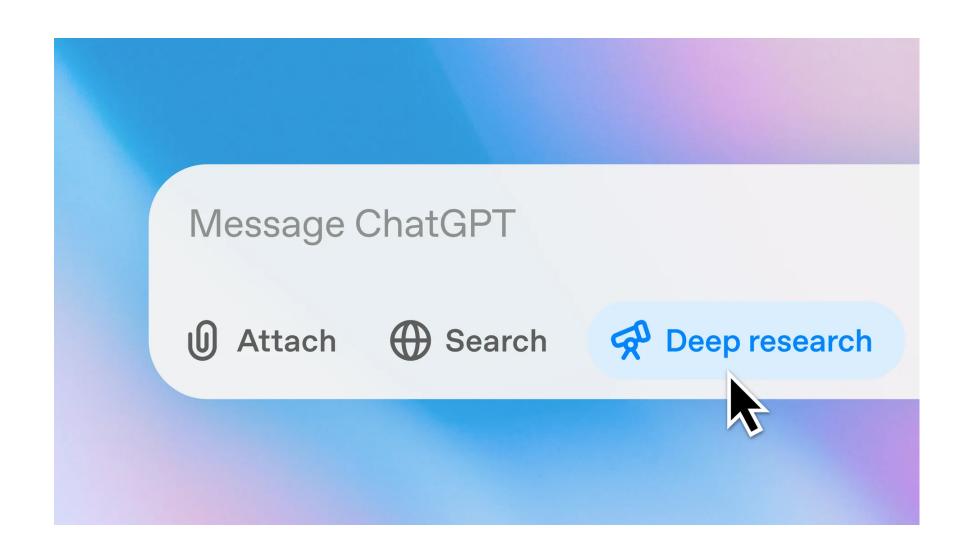




Introduction



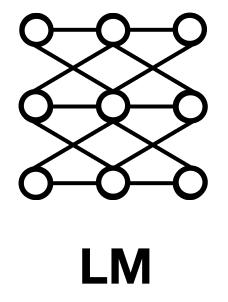
Introduction

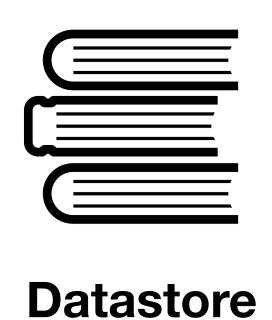


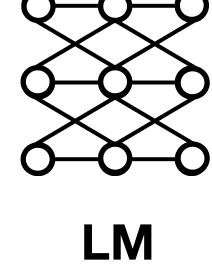
At Databricks 60% of LLM applications use some form of retrieval-augmented generation (RAG)

The Shift from Models to Compound AI Systems

Introduction



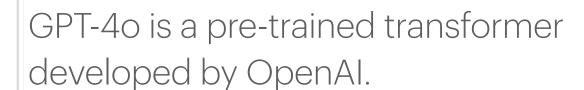




Collections of a large number of documents

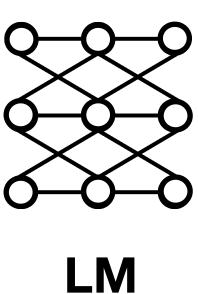
Introduction

Datastore



Transformers is a series of science fiction action films based on the Transformers franchise.

GPT4o was released by OpenAI in May 2024.



Datastore

Collections of a large number of documents

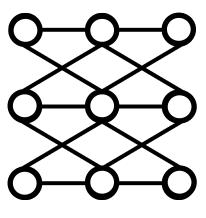
GPT-40 is a pre-trained transformer developed by OpenAI.

Transformers is a series of science fiction action films based on the Transformers franchise.

GPT40 was released by OpenAI in May 2024.

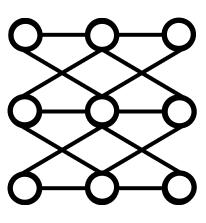
Retriever

Retrieve top *k* documents in datastore



LM

Retriever



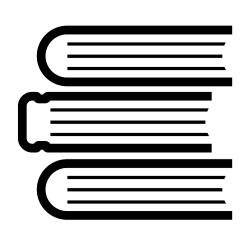
LM

GPT-40 is a pre-trained transformer developed by OpenAI.

Transformers is a series of science fiction action films based on the Transformers franchise.

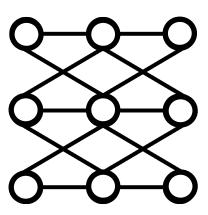
GPT40 was released by OpenAI in May 2024.

x: Which company developed GPT4o?



Datastore

Retriever

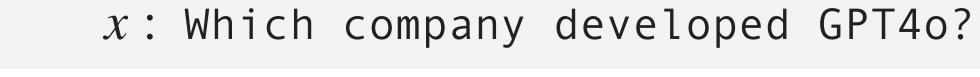


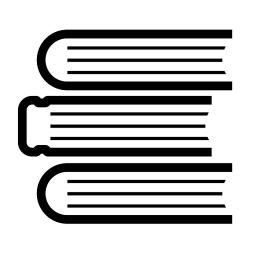
LM

GPT-40 is a pre-trained transformer developed by OpenAI.

Transformers is a series of science fiction action films based on the Transformers franchise.

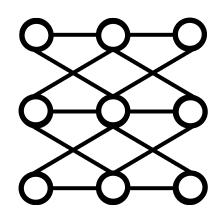
GPT40 was released by OpenAI in May 2024.





Datastore

Retriever



LM

GPT-40 is a pre-trained transformer developed by OpenAI.

Transformers is a series of science fiction action films based on the Transformers franchise.

GPT40 was released by OpenAI in May 2024.

x: Which company developed GPT4o?Datastore x: Which company developed GPT4o?Retriever

LM

 $Sim(\cdot | x)$

GPT-40 is a pre-trained transformer developed by OpenAI.

Transformers is a series of science fiction action films based on the Transformers

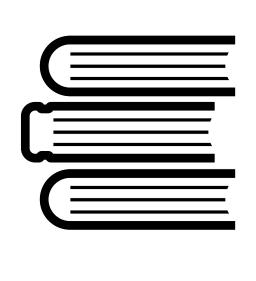
GPT40 was released by OpenAI in May 2024.

0.9

0.1

8.0

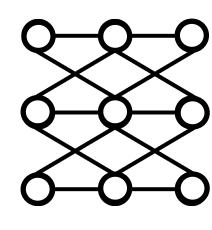
franchise.



Datastore

x: Which company developed GPT4o?





Retriever

LM

$$D \in \text{Top}_k \text{Sim}(\cdot \mid x)$$

GPT-40 is a pre-trained transformer developed by OpenAI.

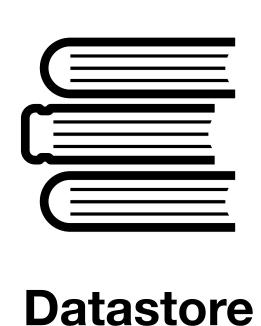
Transformers is a series of science fiction action films based on the Transformers

franchise.

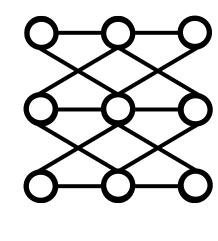
GPT40 was released by OpenAI in May 2024.

0.9

0.1



x: Which company developed GPT4o?



Retriever

LM

 $D \in \mathrm{Top}_k \mathrm{Sim}(\cdot \mid x)$

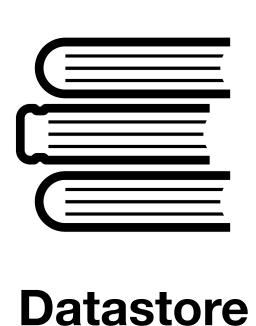
GPT-40 is a pre-trained transformer developed by OpenAI.

0.9

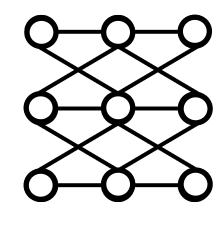
Transformers is a series of science fiction action films based on the Transformers franchise.

0.1

GPT40 was released by OpenAI in May 2024.



x: Which company developed GPT4o?



Retriever

LM

 $D \in \mathrm{Top}_k \mathrm{Sim}(\cdot \mid x)$

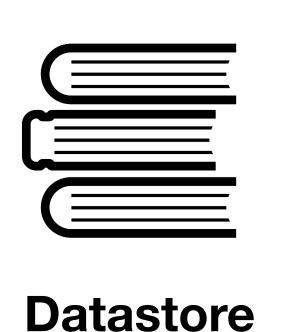
GPT-40 is a pre-trained transformer developed by OpenAI.

0.9

Transformers is a series of science fiction action films based on the Transformers franchise.

0.1

GPT40 was released by OpenAI in May 2024.



x: Which company developed GPT4o? $D \longrightarrow \mathbb{R}$ Retriever LM

 $D \in \mathrm{Top}_k \mathrm{Sim}(\cdot \mid x)$

GPT-40 is a pre-trained transformer developed by OpenAI.

0.9

Transformers is a series of science fiction action films based on the Transformers franchise.

U.1

GPT40 was released by OpenAI in May 2024.

 $x: \mbox{Which company developed GPT4o?}$ $D \longrightarrow \mbox{Retriever}$

 $D \in \mathrm{Top}_k \mathrm{Sim}(\cdot \mid x)$

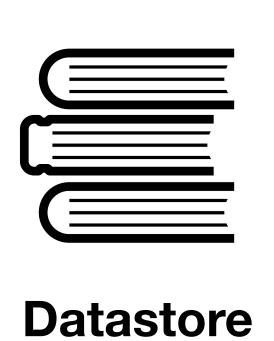
GPT-40 is a pre-trained transformer developed by OpenAI.

0.9

Transformers is a series of science fiction action films based on the Transformers franchise.

0.1

GPT40 was released by OpenAI in May 2024.



$$D \in \mathrm{Top}_k \mathrm{Sim}(\cdot \mid x)$$

GPT-40 is a pre-trained transformer developed by OpenAI.

0.9

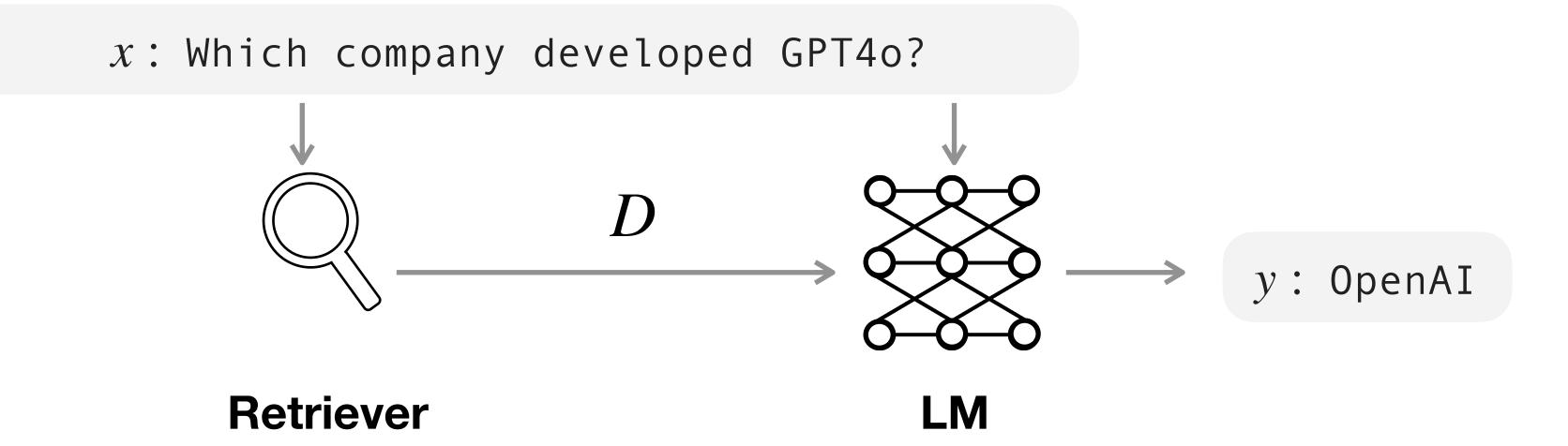
Transformers is a series of science fiction action films based on the Transformers franchise.

0.1

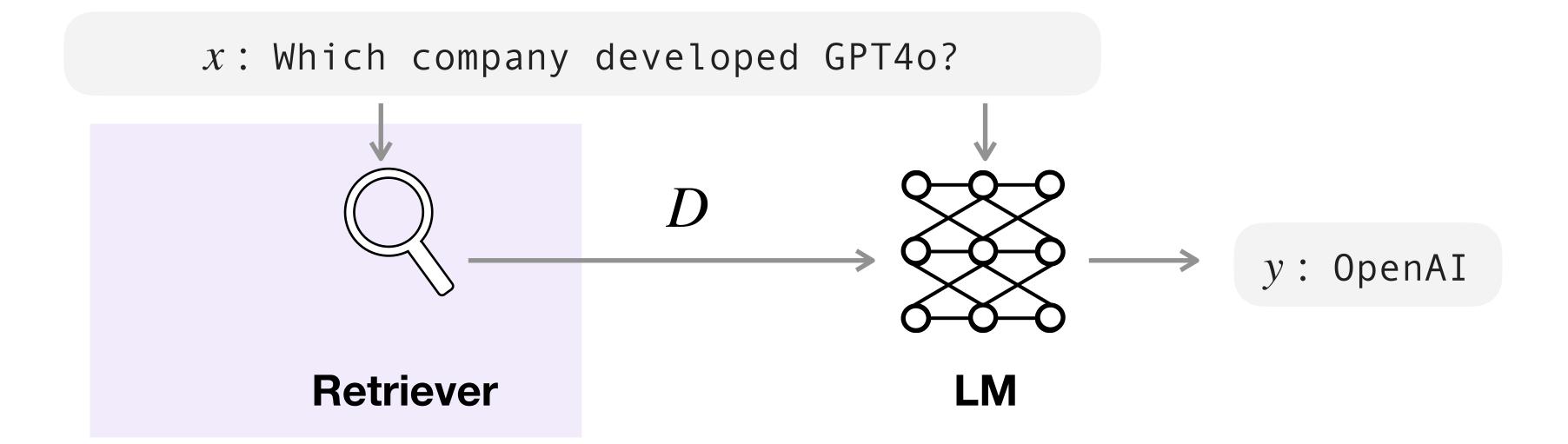
GPT40 was released by OpenAI in May 2024.

8.0

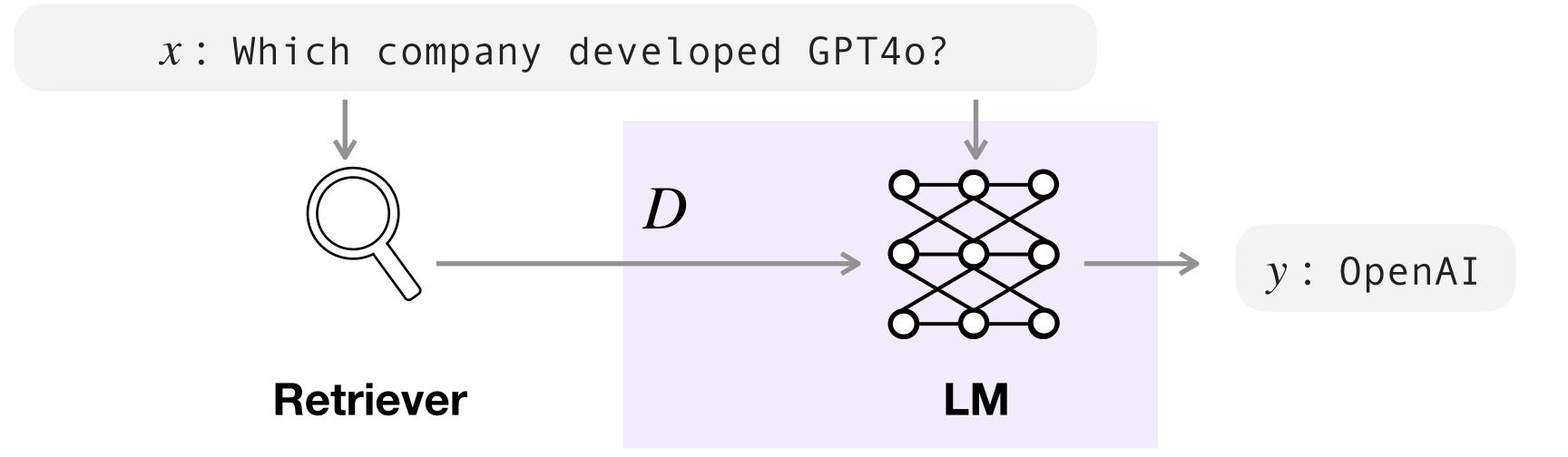
Introduction



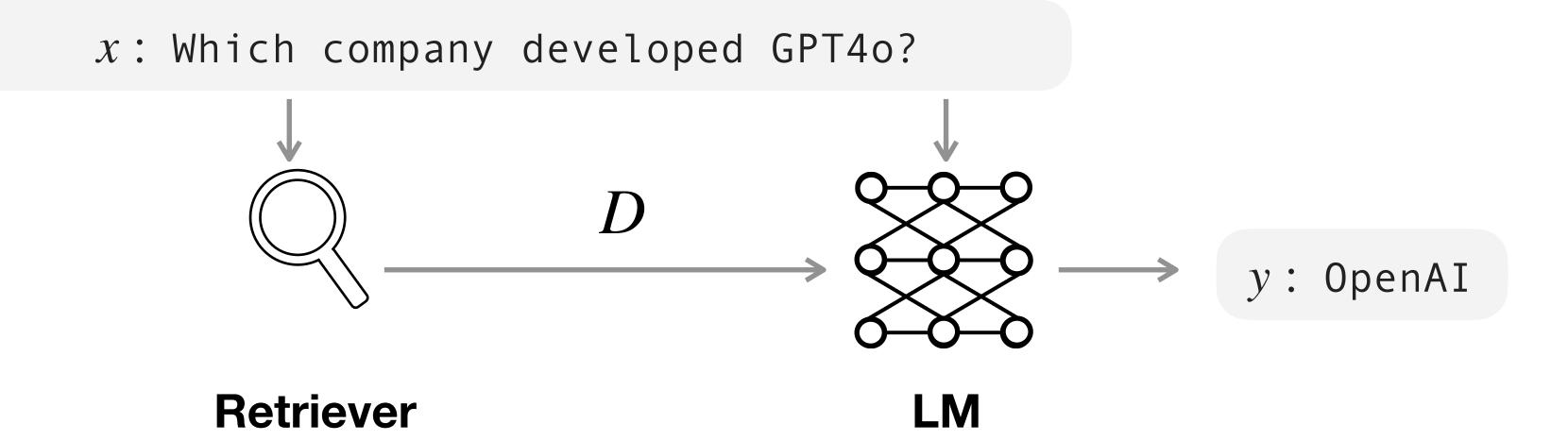
- Sources of datastore
- Processing
- Scaling



- Types of retrievers
- Training
- Evaluations



- Common architectures
- Recent progress in RAG



- Sources of datastore
- Processing
- Scaling

x: Which company developed GPT4o?

x: Which company developed GPT4o?

English Wikipedia

Chen et al., 2017; Gu et al., 2020; Asai et al., 2020; Guu et al., 2021; Lewis et al., 2021 ... etc

https://dumps.wikimedia.org/

x: Which company developed GPT4o?

x: How should I implement RAG
using LlamaIndex?

English Wikipedia

Chen et al., 2017; Gu et al., 2020; Asai et al., 2020; Guu et al., 2021; Lewis et al., 2021 ... etc

https://dumps.wikimedia.org/

x: Which company developed GPT4o?

x: How should I implement RAG
using LlamaIndex?

English Wikipedia

Chen et al., 2017; Gu et al., 2020; Asai et al., 2020; Guu et al., 2021; Lewis et al., 2021 ... etc

https://dumps.wikimedia.org/

Code snippets

Official documentations



Community forums

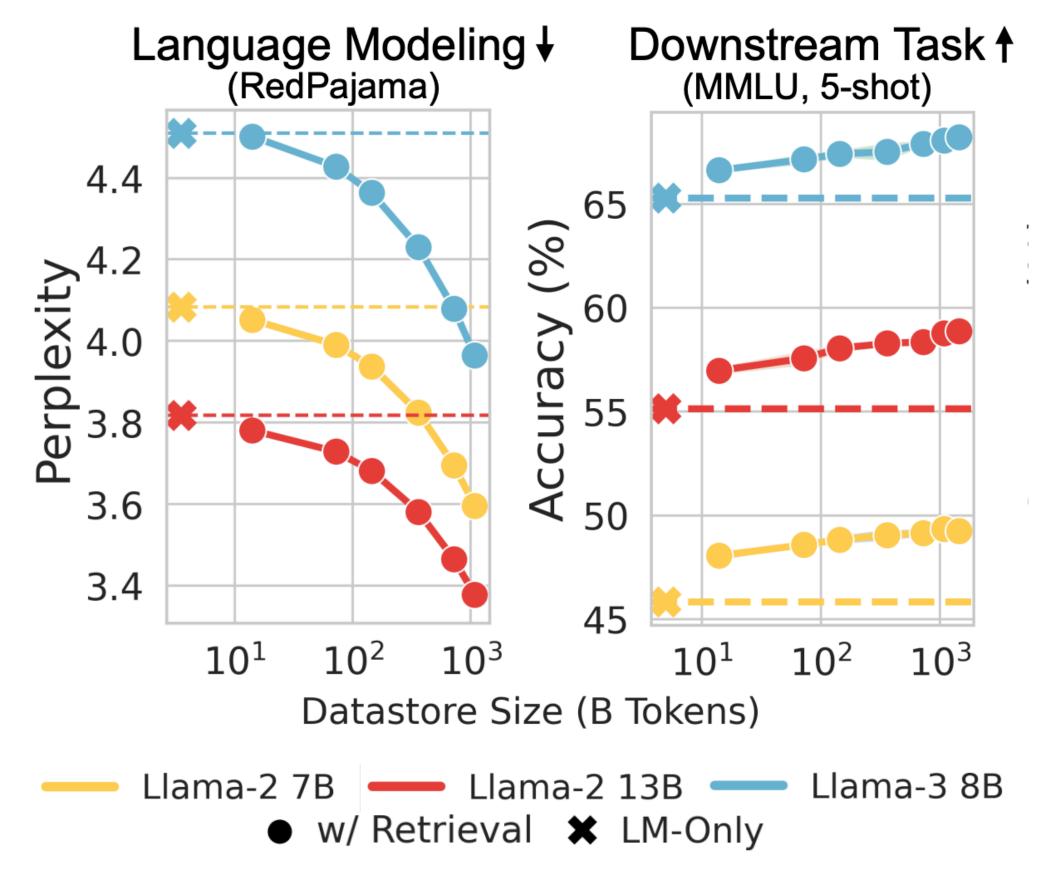
MassiveDS

1.4 trillion tokens (22TB)

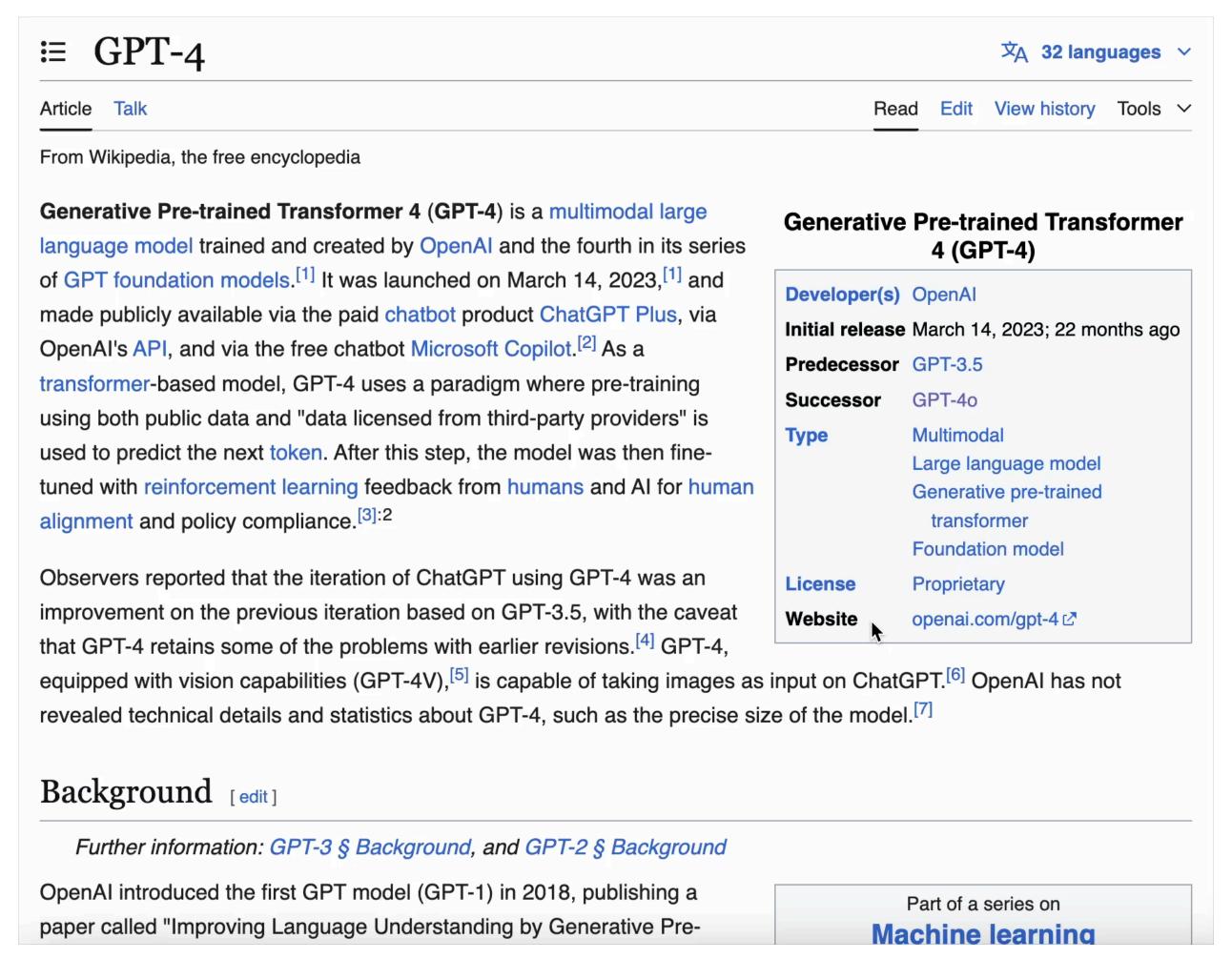
MassiveDS

1.4 trillion tokens (22TB)

Datastore Scaling



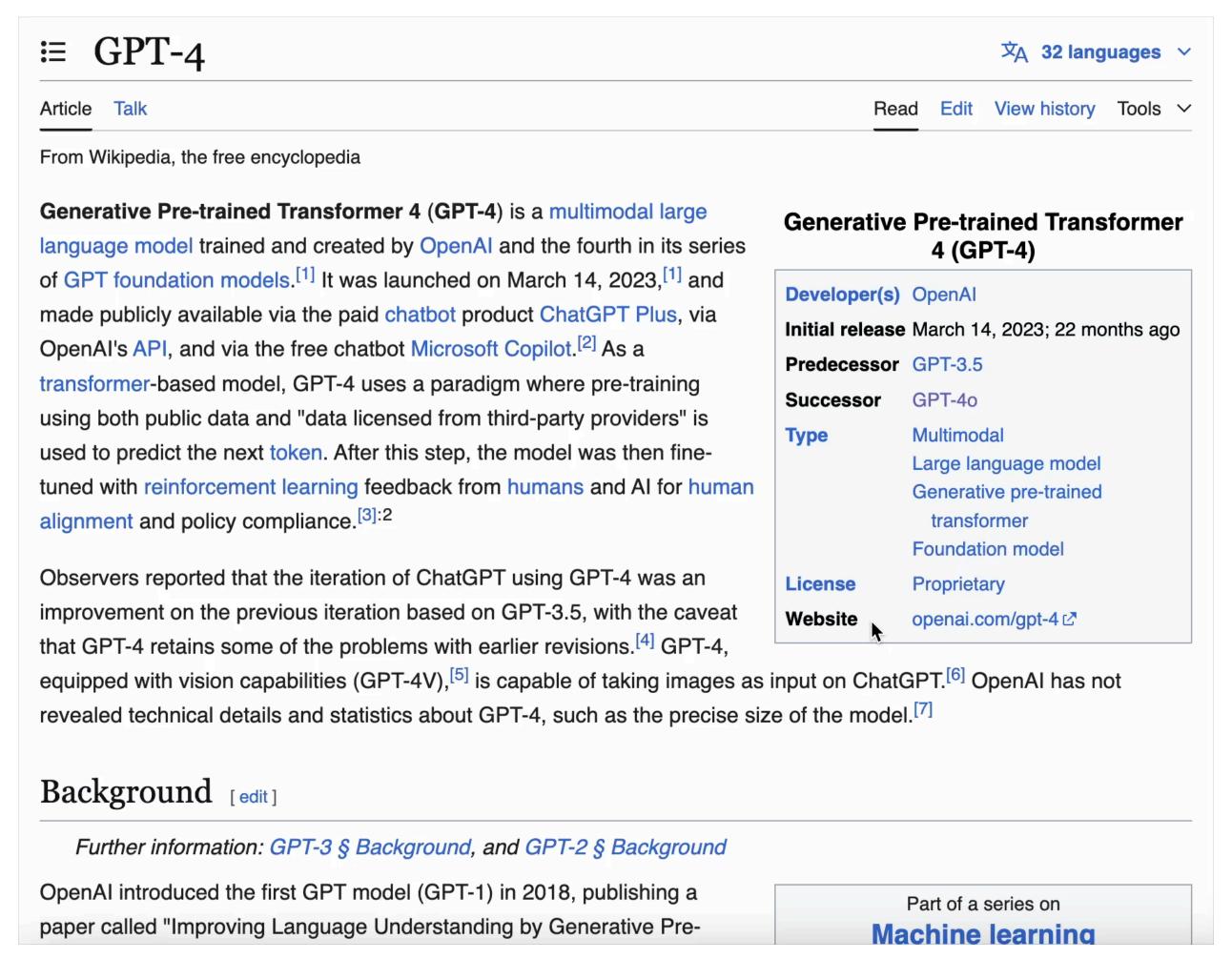
Processing Documents



https://en.wikipedia.org/wiki/GPT-4

Part I: Datastore

Processing Documents



https://en.wikipedia.org/wiki/GPT-4

Part I: Datastore

Processing Documents

Curate and preprocess data

e.g., HTML -> Plain text

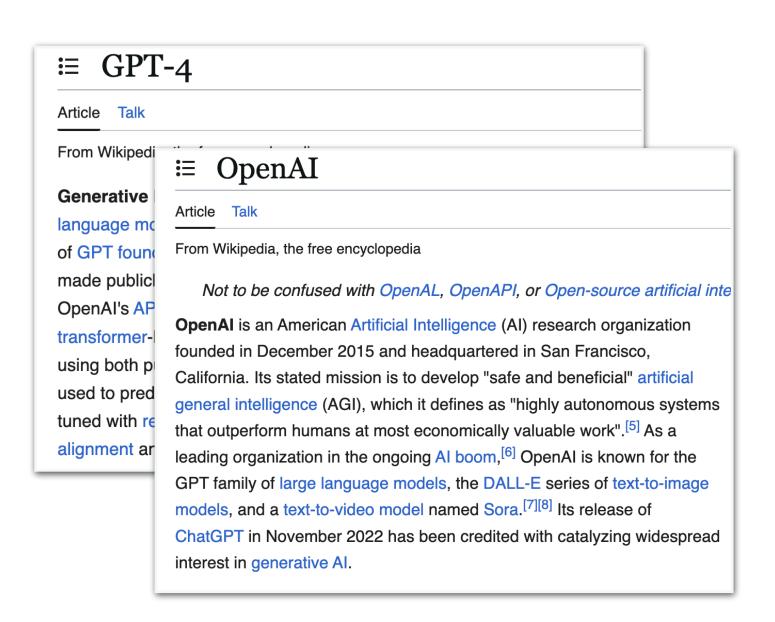
Curate and preprocess data

e.g., HTML -> Plain text

Curate and preprocess data

--- Chunking

e.g., HTML -> Plain text



Paragraph-level (e.g., \n)

Every k words (e.g., 100-250)

GPT-40 is a pre-trained transformer developed by OpenAI.

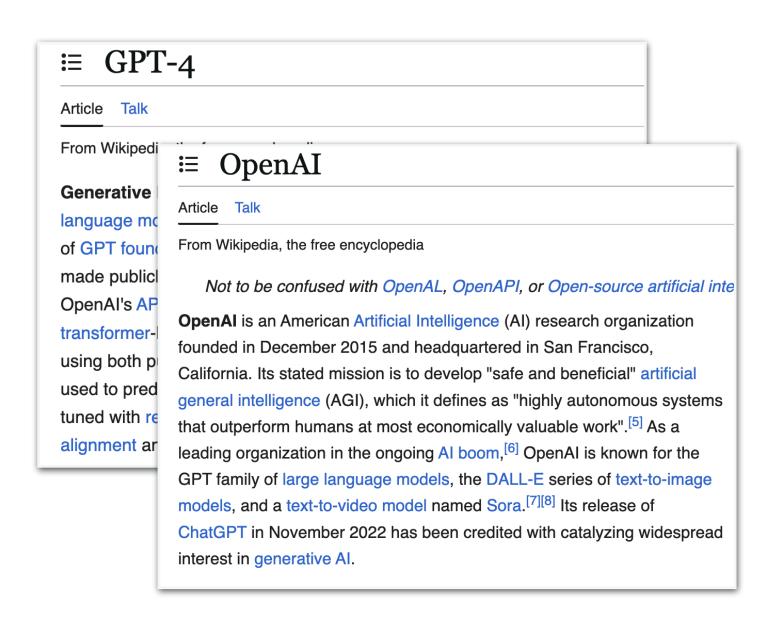
Transformers is a series of science fiction action films based on the Transformers franchise.

GPT40 was released by OpenAI in May 2024.

@1\$0@

Curate and preprocess data

e.g., HTML -> Plain text



Paragraph-level (e.g., \n)

Every k words (e.g., 100-250)

GPT-40 is a pre-trained transformer developed by OpenAI.

Transformers is a series of science fiction action films based on the Transformers franchise.

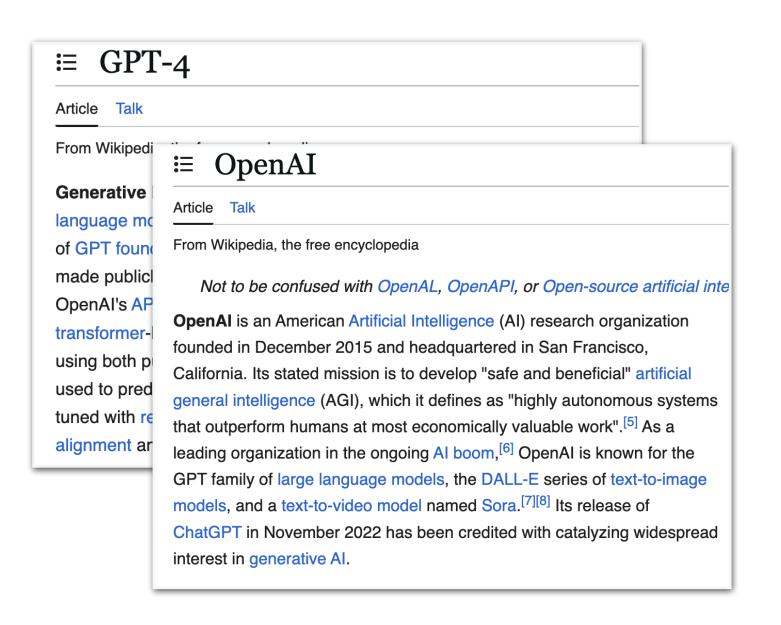
GPT40 was released by OpenAI in May 2024.

@1\$0@

Curate and preprocess data

Chunking ——— Post-processing

e.g., HTML -> Plain text



Paragraph-level (e.g., \n)

Every k words (e.g., 100-250)

GPT-40 is a pre-trained transformer developed by OpenAI.

Transformers is a series of science fiction action films based on the Transformers franchise.

GPT40 was released by OpenAI in May 2024.

@1\$0@

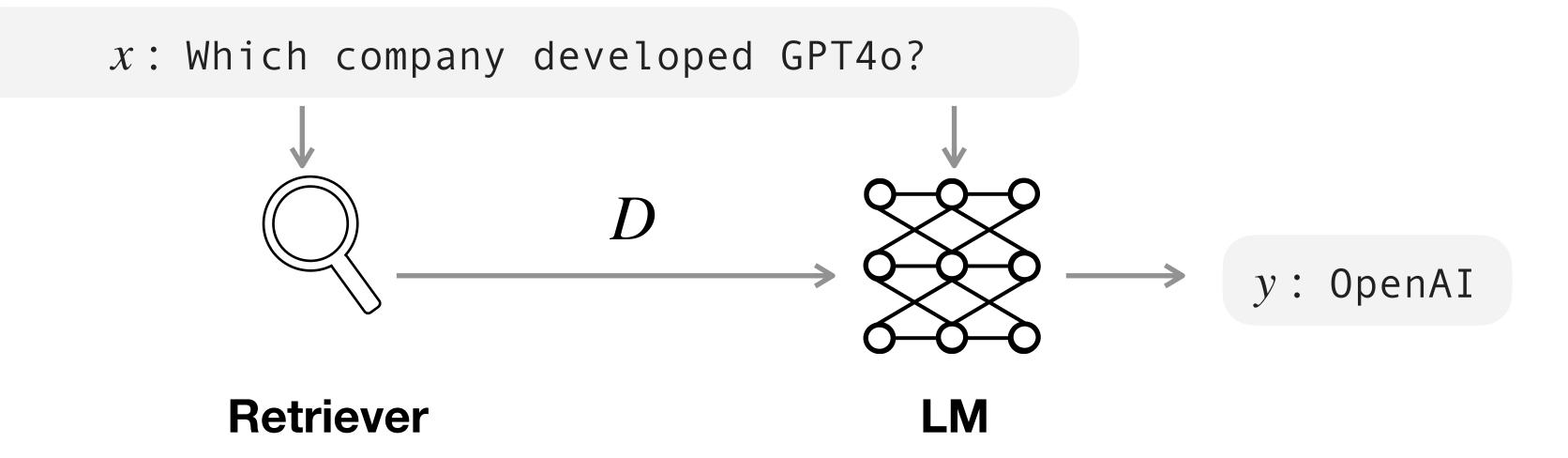
e.g., Remove short documents

GPT-40 is a pre-trained transformer developed by OpenAI.

Transformers is a series of science fiction action films based on the Transformers franchise.

GPT40 was released by OpenAI in May 2024.

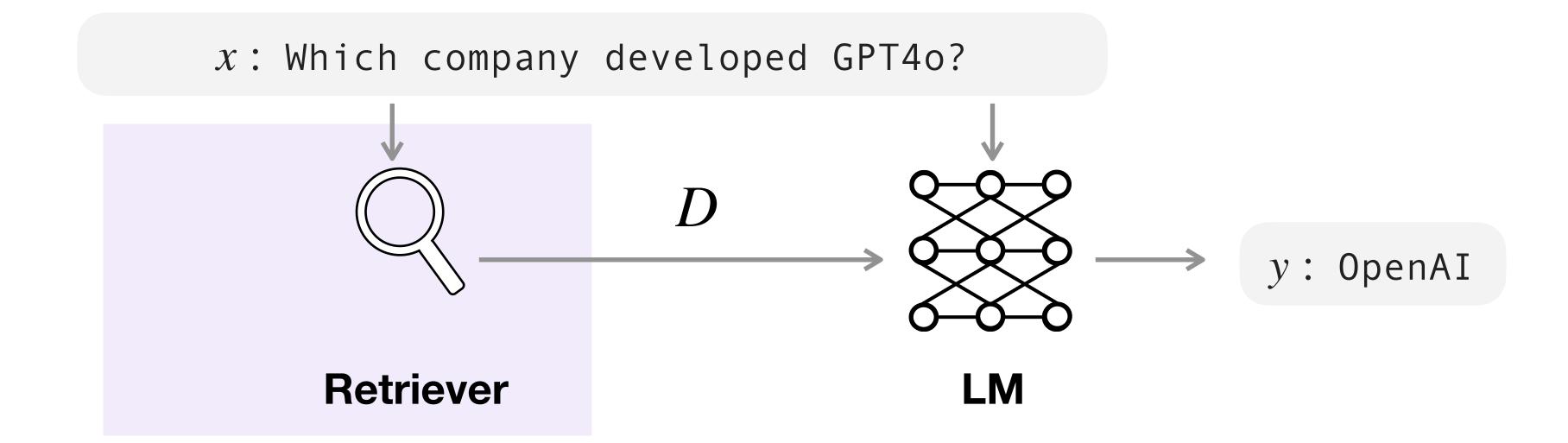
Summary of Part I



- Sources of datastore
- Processing
- Scaling

- Choosing the right datastore is important
- Chunking and filtering strategies are important
- Scaling datastores offer performance gain while adding technical challenges

Today's Outline



- Types of retrievers
- Training
- Evaluations

$$D \in \mathrm{Top}_k \mathrm{Sim}(\cdot \mid x)$$

$$D \in \text{Top}_k \text{Sim}(\cdot \mid x)$$

Sparse retrievers

- **Sim:** Term-frequency based embeddings
- Training is not required

e.g., TF-IDF, BM25

$$D \in \mathrm{Top}_k \mathrm{Sim}(\cdot \mid x)$$

Sparse retrievers

- **Sim:** Term-frequency based embeddings
- Training is not required

e.g., TF-IDF, BM25

Dense retrievers

- **Sim**: dense embeddings encoded by pre-trained LMs
- Training is needed*

e.g., DPR, Contriever, ColBERT

$$D \in \mathrm{Top}_k \mathrm{Sim}(\cdot \mid x)$$

Sparse retrievers

- **Sim:** Term-frequency based embeddings
- Training is not required

e.g., TF-IDF, BM25

Dense retrievers

- **Sim**: dense embeddings encoded by pre-trained LMs
- Training is needed*

e.g., DPR, Contriever, ColBERT

Rerankers

- **Sim**: Scores based on jointly encoded query and doc
- Training is needed*

$$D \in \mathrm{Top}_k \mathrm{Sim}(\cdot \mid x)$$

Sparse retrievers

- **Sim:** Term-frequency based embeddings
- Training is not required

e.g., TF-IDF, BM25

Dense retrievers

- **Sim**: dense embeddings encoded by pre-trained LMs
- Training is needed*

e.g., DPR, Contriever, ColBERT

Rerankers

- **Sim**: Scores based on jointly encoded query and doc
- Training is needed*

$$D \in \text{Top}_k \text{Sim}(\cdot \mid x)$$

Sparse retrievers

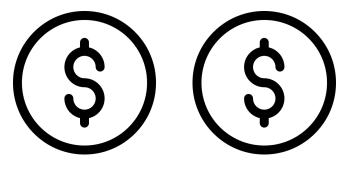
- **Sim:** Term-frequency based embeddings
- Training is not required

e.g., TF-IDF, BM25

Dense retrievers

- **Sim**: dense embeddings encoded by pre-trained LMs
- Training is needed*

e.g., DPR, Contriever, ColBERT



Rerankers

- **Sim**: Scores based on jointly encoded query and doc
- Training is needed*

 $D \in \text{Top}_k \text{Sim}(\cdot \mid x)$

Sparse retrievers

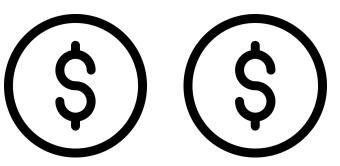
- Sim: Term-frequency based embeddings
- Training is not required

e.g., TF-IDF, BM25

Dense retrievers

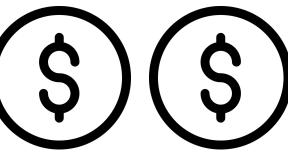
- Sim: dense embeddings encoded by pre-trained LMs
- Training is needed*

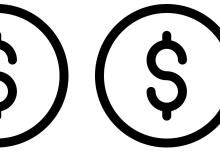
e.g., DPR, Contriever, ColBERT



Rerankers

- Sim: Scores based on jointly encoded query and doc
- Training is needed*





Sparse Retrievers: One-hot Vectors

 $d_2 = nlp is an$ q=what is nlp d_1 = what is life? acronym for natural candy is life! language processing what candy nlp is

0 0 $d_3 = I$ like to do good research on nlp

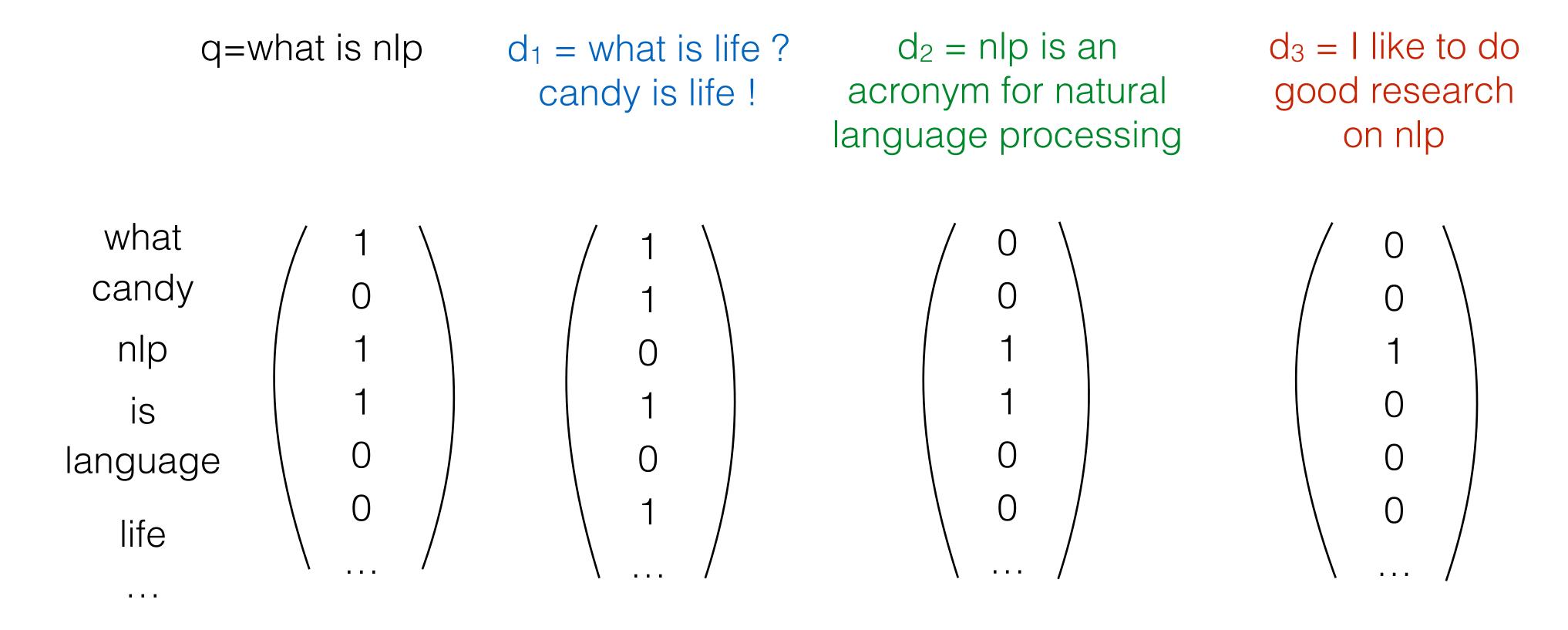
Part 2: Retriever

language

life

. . .

Sparse Retrievers: One-hot Vectors

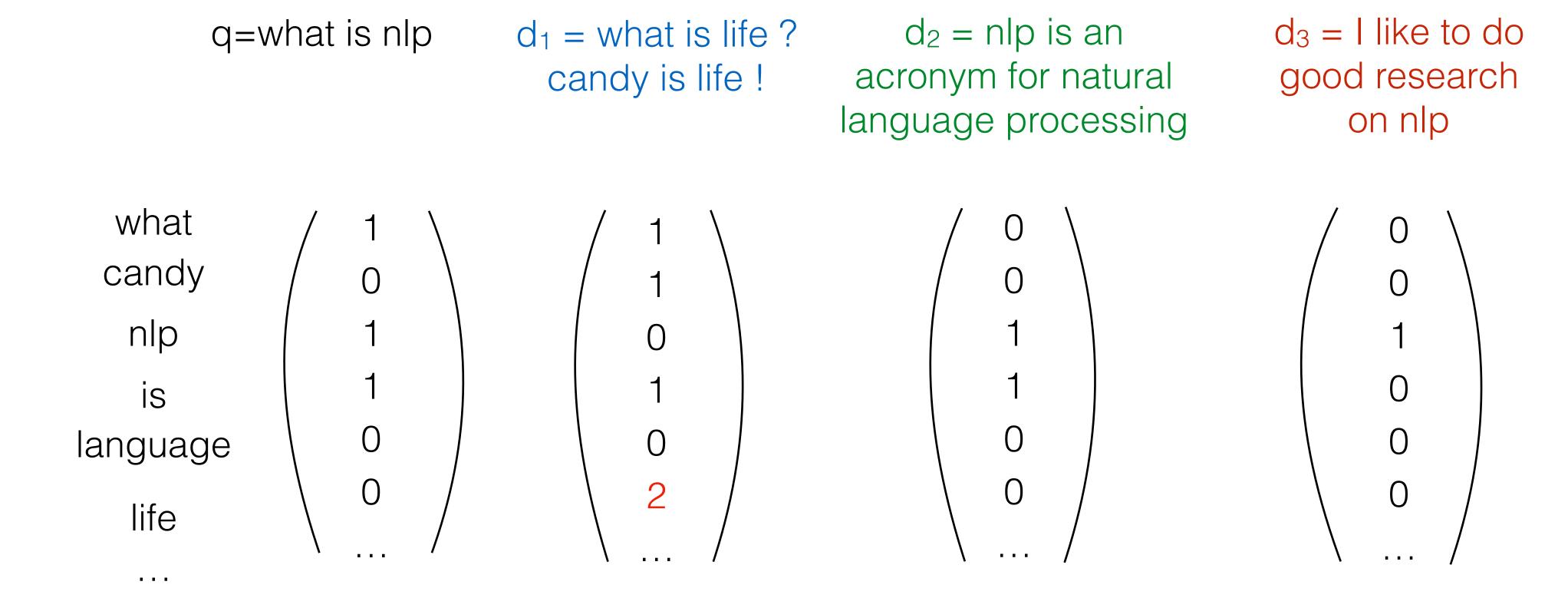


Check if a term appears in a document

Sparse Retrievers: Term-count Vectors

 $d_2 = nlp is an$ q=what is nlp $d_3 = I$ like to do d_1 = what is life? acronym for natural good research candy is life! language processing on nlp what candy nlp is 0 language 2 0 life . . .

Sparse Retrievers: Term-count Vectors



Count the number of appearances in a doc

$$TF(t,d) = \frac{\text{freq}(t,d)}{\sum_{t'} \text{freq}(t',d)} \quad IDF(t) = \log\left(\frac{|D|}{\sum_{d'\in D} \delta(\text{freq}(t,d') > 0)}\right)$$

$$\text{TF-IDF}(t,d) = \text{TF}(t,d) \times \text{IDF}(t)$$

BM-25(t,d) = IDF(t) ·
$$\frac{\operatorname{freq}(t,d) \cdot (k_1+1)}{\operatorname{freq}(t,d) + k_1 \cdot \left(1 - b + b \cdot \frac{|d|}{\operatorname{avgdl}}\right)}$$

$$\begin{aligned} & \text{d}_1 = \underbrace{\text{what is life ?}}_{\text{candy is life !}} \\ & \text{TF}(t,d) = \frac{\operatorname{freq}(t,d)}{\sum_{t'} \operatorname{freq}(t',d)} & \text{IDF}(t) = \log\left(\frac{|D|}{\sum_{d' \in D} \delta(\operatorname{freq}(t,d') > 0)}\right) \\ & \text{t}_1 = \text{what} \end{aligned}$$

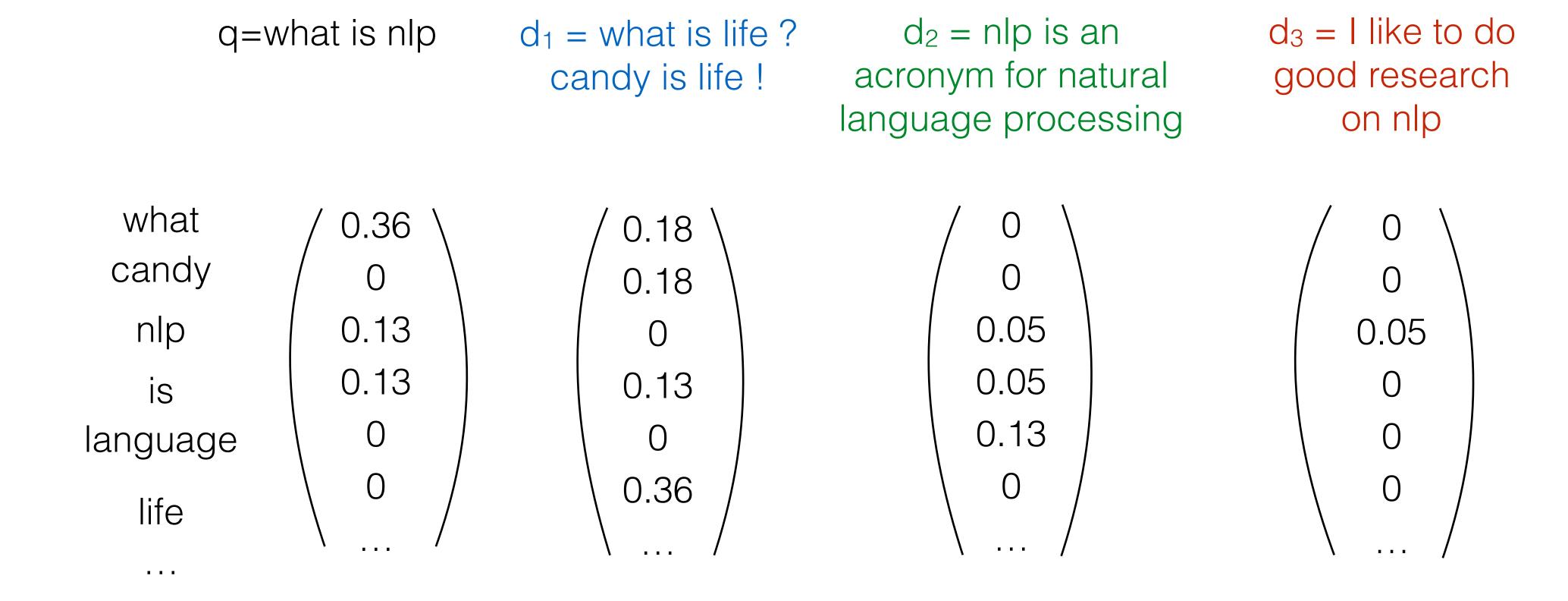
BM-25(t,d) = IDF(t) ·
$$\frac{\operatorname{freq}(t,d) \cdot (k_1+1)}{\operatorname{freq}(t,d) + k_1 \cdot \left(1 - b + b \cdot \frac{|d|}{\operatorname{avgdl}}\right)}$$

$$\begin{array}{c} \text{d_1 = } \underbrace{\text{what is life ?}}_{\text{candy is life !}} & \text{\# of documents} \\ \text{TF}(t,d) = \underbrace{\frac{\text{freq}(t,d)}{\sum_{t'} \text{freq}(t',d)}}_{\text{t_1 = what}} & \text{IDF}(t) = \log \left(\frac{|D|}{\sum_{d' \in D} \delta(\text{freq}(t,d') > 0)} \right) \\ \text{TF-IDF}(t,d) = \text{TF}(t,d) \times \text{IDF}(t) \\ \end{array}$$

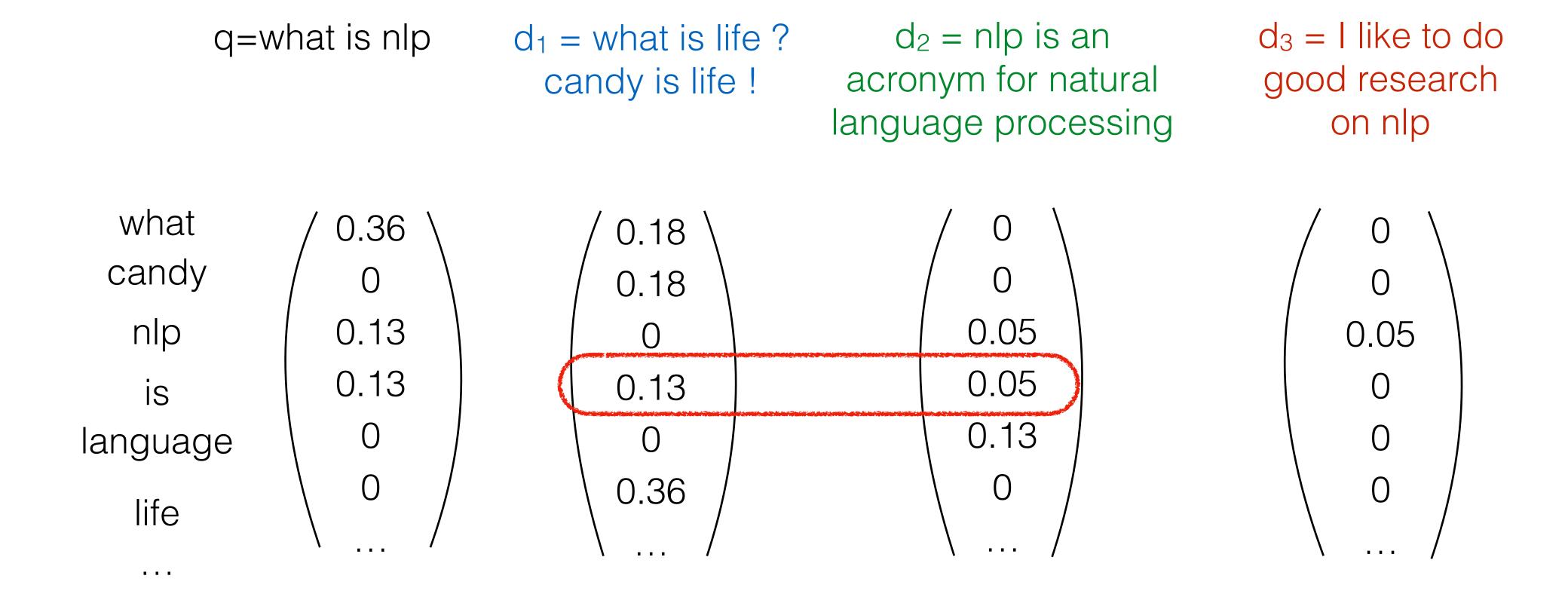
BM-25(t,d) = IDF(t) ·
$$\frac{\operatorname{freq}(t,d) \cdot (k_1 + 1)}{\operatorname{freq}(t,d) + k_1 \cdot \left(1 - b + b \cdot \frac{|d|}{\operatorname{avgdl}}\right)}$$

$$\begin{array}{c} \text{d_1 = } \underbrace{\text{what is life ?}}_{\text{candy is life !}} & \text{\# of documents} \\ \text{TF}(t,d) = \underbrace{\frac{\text{freq}(t,d)}{\sum_{t'} \text{freq}(t',d)}}_{\text{t_1 = what}} & \text{IDF}(t) = \log \left(\frac{|D|}{\sum_{d' \in D} \delta(\text{freq}(t,d') > 0)} \right) \\ \text{\# of documents where term t appears} \\ & \text{TF-IDF}(t,d) = \text{TF}(t,d) \times \text{IDF}(t) \\ \end{array}$$

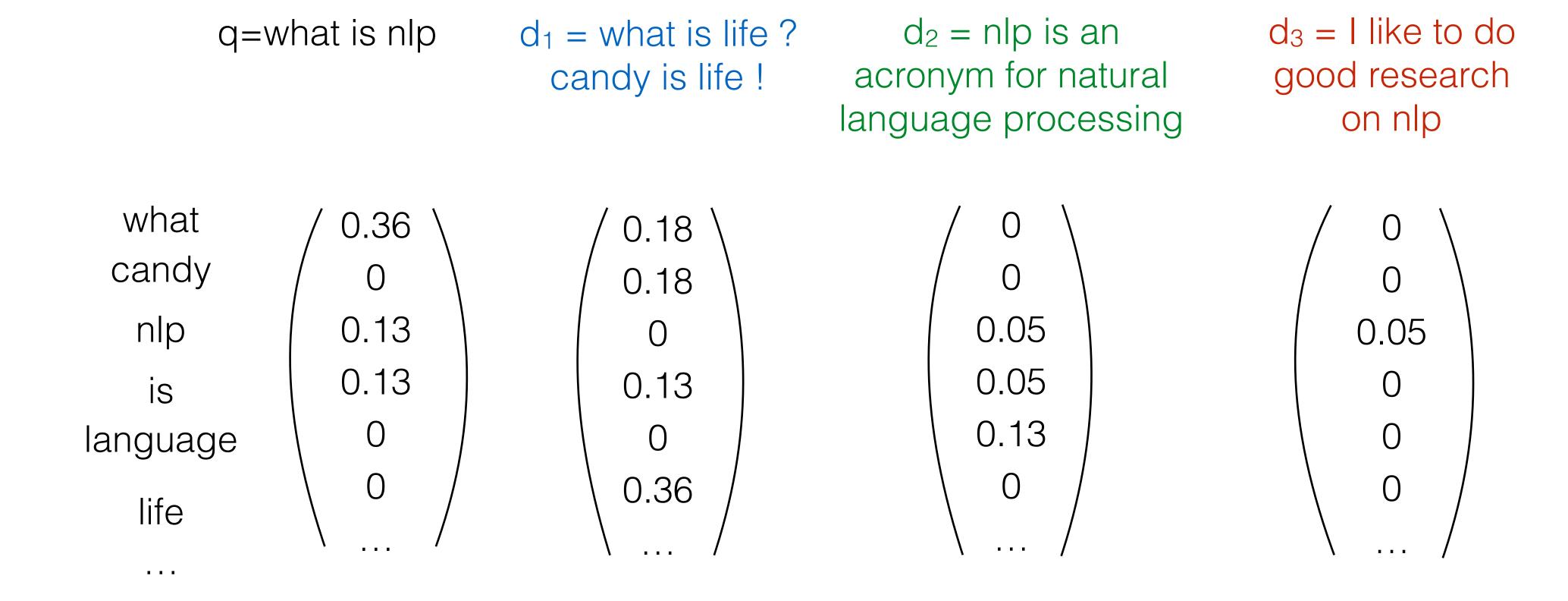
BM-25(t,d) = IDF(t) ·
$$\frac{\operatorname{freq}(t,d) \cdot (k_1 + 1)}{\operatorname{freq}(t,d) + k_1 \cdot \left(1 - b + b \cdot \frac{|d|}{\operatorname{avgdl}}\right)}$$



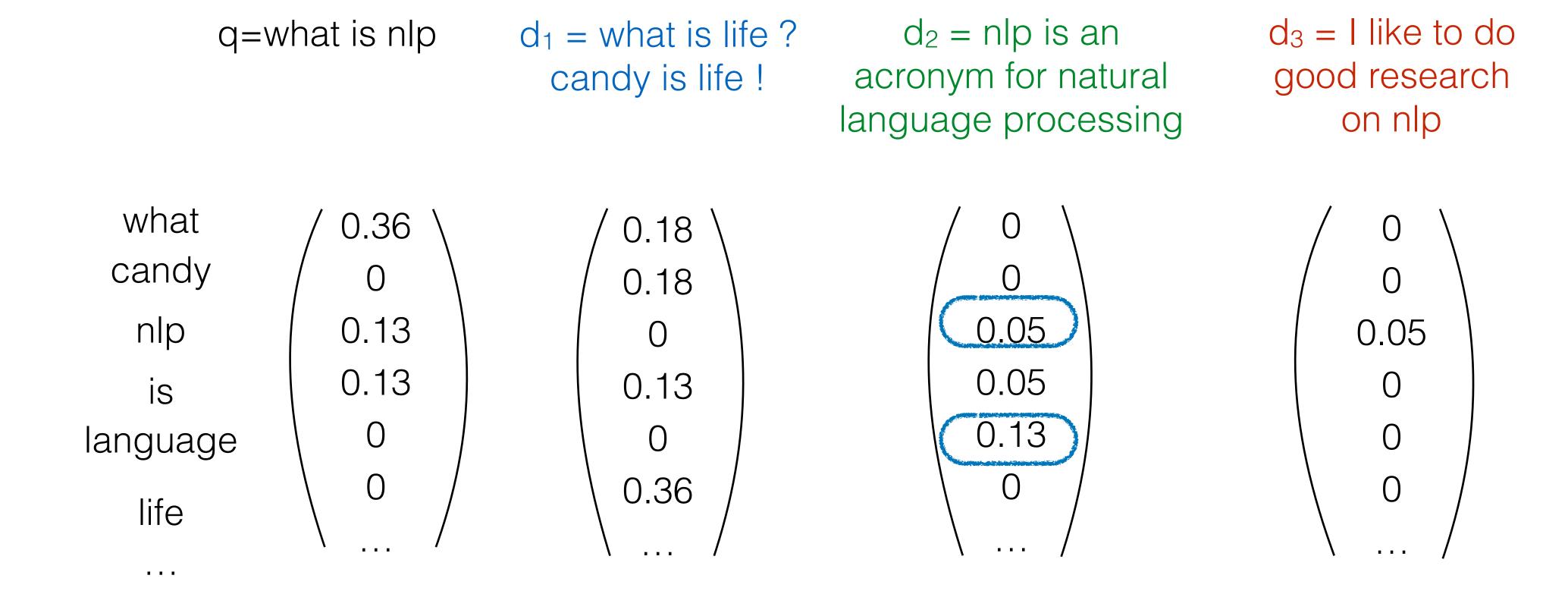
Compute TF-IDF weights to build weighted vectors



Compute TF-IDF weights to build weighted vectors



Compute TF-IDF weights to build weighted vectors



Compute TF-IDF weights to build weighted vectors

q=what is nlp

d₁ = what is life ? candy is life!

d₂ = nlp is anacronym for naturallanguage processing

d₃ = I like to dogood researchon nlp

what candy 0.36 candy 0 0.13 nlp 0.13 is 0.13 language 0 0 control occurs of the candy occurs occurs occurs on the candy occurs occurs

0.18
0.18
0.18
0
0.13
0.0
0.36
...

0 0.05 0.05 0.13 0 q=what is nlp

d₁ = what is life? candy is life! d₂ = nlp is anacronym for naturallanguage processing

d₃ = I like to do good research on nlp

what candy 0.36 \ o nlp 0.13 \ is 0.13 \ language 0 \ life \ \ ...

0.18
0.18
0.18
0
0.13
0.13
0
0.36
...

0 0.05 0.05 0.13 0

27

Compute cosine similarity

. . .

q=what is nlp

d₁ = what is life ?
 candy is life !

d₂ = nlp is anacronym for naturallanguage processing

d₃ = I like to do good research on nlp

what candy 0.36 candy 0 0.13 nlp 0.13 is 0.13 language 0 life 0

0 0.05 0.05 0.13 0

Compute cosine similarity

. . .

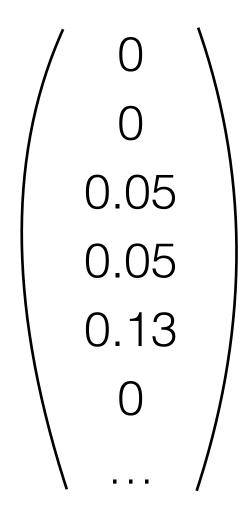
 $q^*d_1 = 0.44$

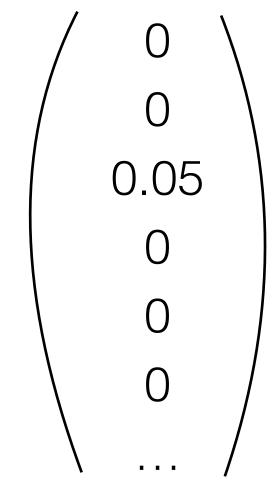
q=what is nlp

d₁ = what is life ?
 candy is life !

d₂ = nlp is anacronym for naturallanguage processing

d₃ = I like to dogood researchon nlp





Compute cosine similarity

$$q*d_1 = 0.44$$

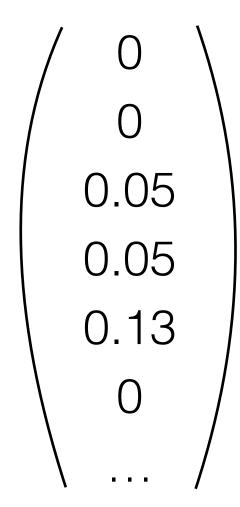
$$q^*d_2 = 0.21$$

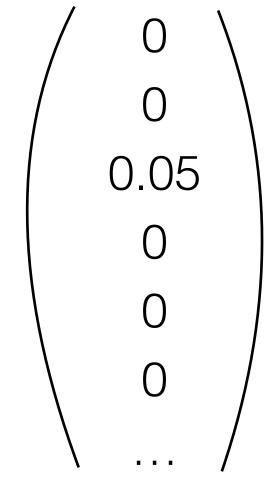
q=what is nlp

d₁ = what is life ?
 candy is life !

d₂ = nlp is anacronym for naturallanguage processing

d₃ = I like to dogood researchon nlp





Compute cosine similarity

 $q*d_1 = 0.44$

 $q^*d_2 = 0.21$

 $q^*d_3 = 0.32$

Computing TF-IDF Matrices: Weighted-term Vectors

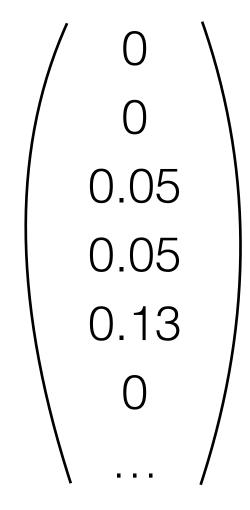
q=what is nlp

d₁ = what is life ?
 candy is life !

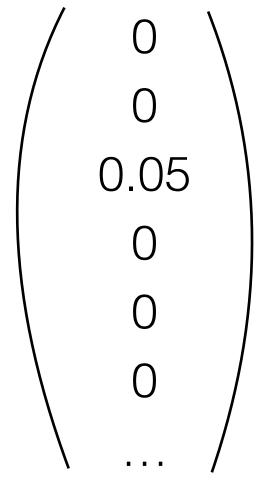
d₂ = nlp is anacronym for naturallanguage processing

d₃ = I like to dogood researchon nlp

$$q^*d_1 = 0.44$$



$$q^*d_2 = 0.21$$



$$q^*d_3 = 0.32$$

Computing TF-IDF Matrices: Weighted-term Vectors

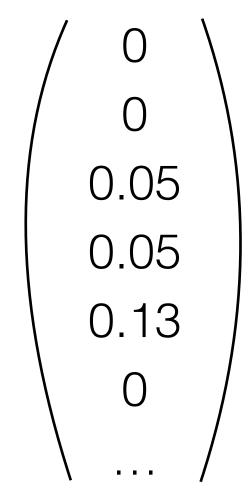
q=what is nlp

d₁ = what is life ?
 candy is life !

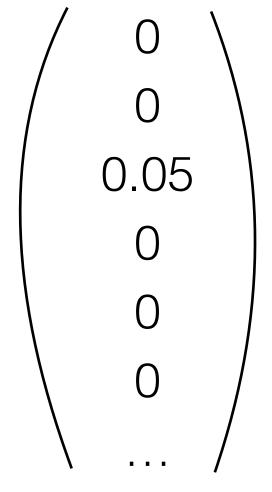
d₂ = nlp is anacronym for naturallanguage processing

d₃ = I like to dogood researchon nlp

$$q^*d_1 = 0.44$$



$$q^*d_2 = 0.21$$



$$q^*d_3 = 0.32$$

Computing TF-IDF Matrices: Weighted-term Vectors

q=w	hat is nlp	d ₁ = what is life? candy is life!	d ₂ = nlp is an acronym for natural language processing	d ₃ = I like to do good research on nlp
what candy nlp is language life	<pre>/ 0.36 \</pre>	0.18 0.18 0 0.13 0 0.36	0 0.05 0.05 0.13 0	0 0.05 0 0 0
"Bag-of-words"		$q^*d_1 = 0.44$	$q^*d_2 = 0.21$	$q^*d_3 = 0.32$

Can't fully capture semantic similarities

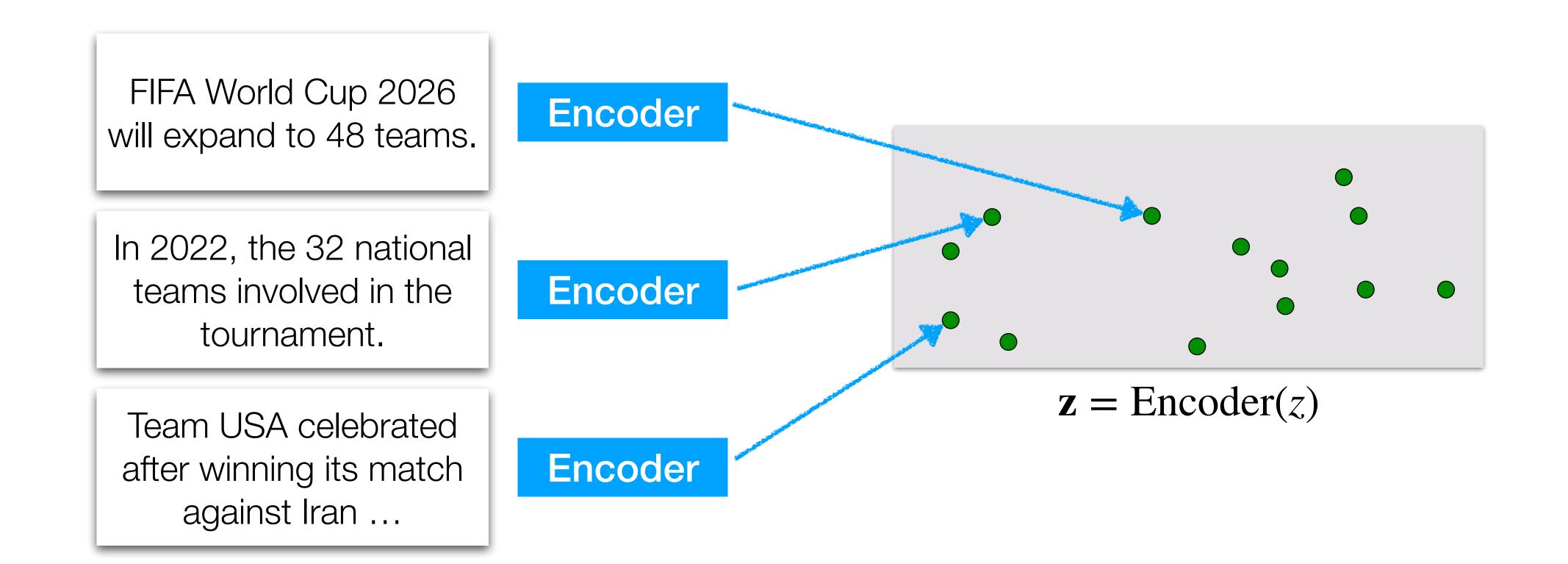
Dense Retrievers: Overview

FIFA World Cup 2026 will expand to 48 teams.

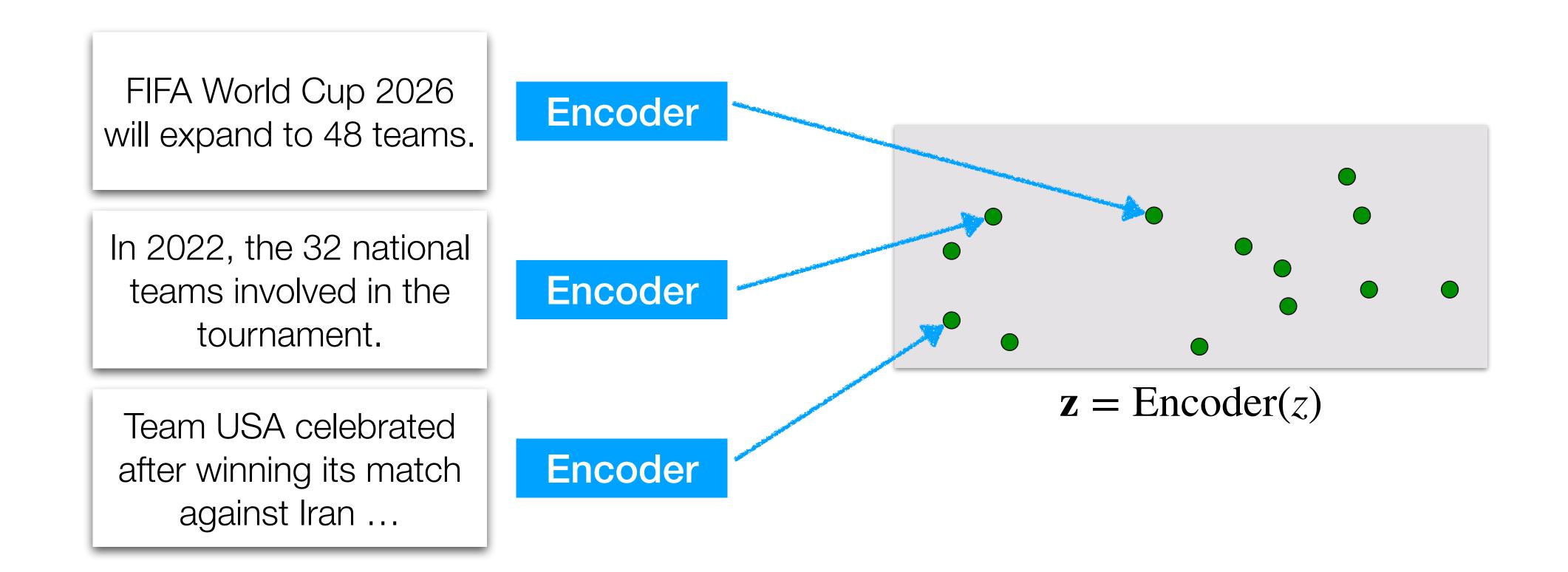
In 2022, the 32 national teams involved in the tournament.

Team USA celebrated after winning its match against Iran ...

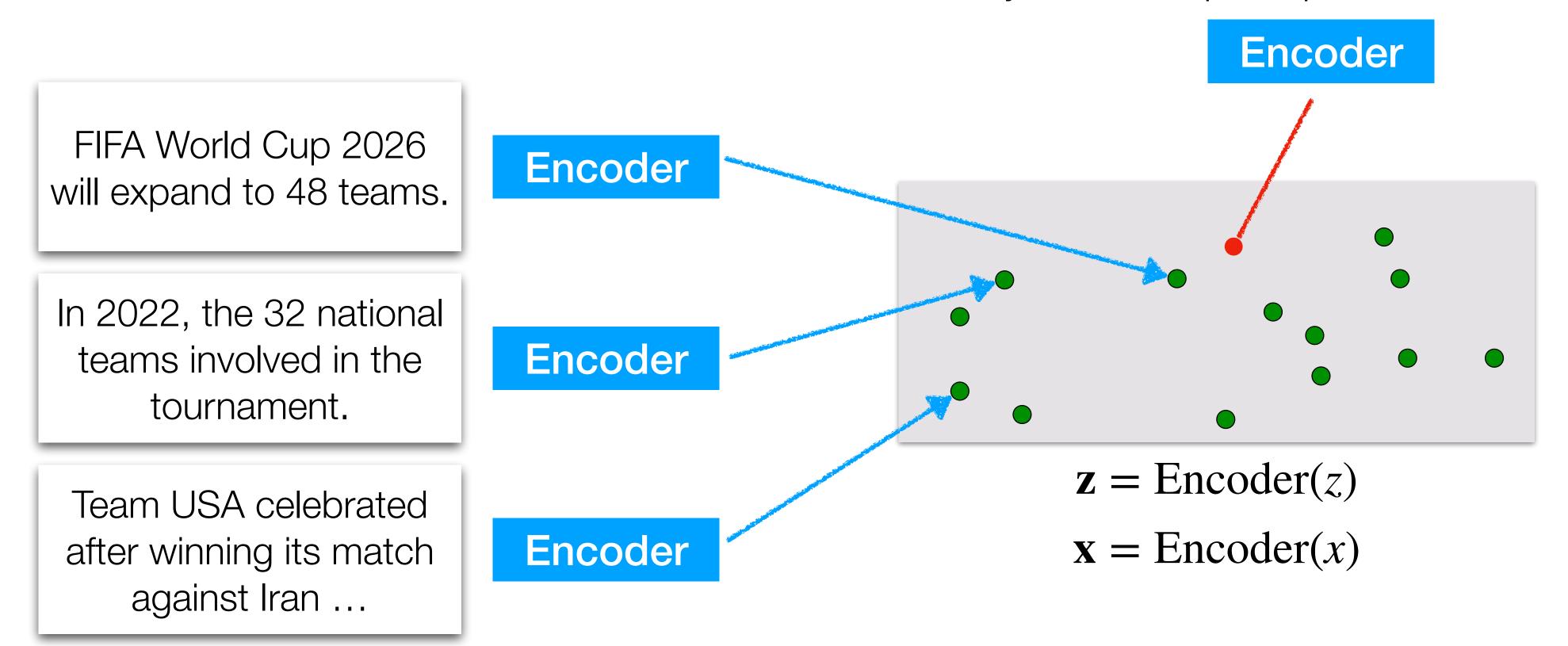
Dense Retrievers: Overview



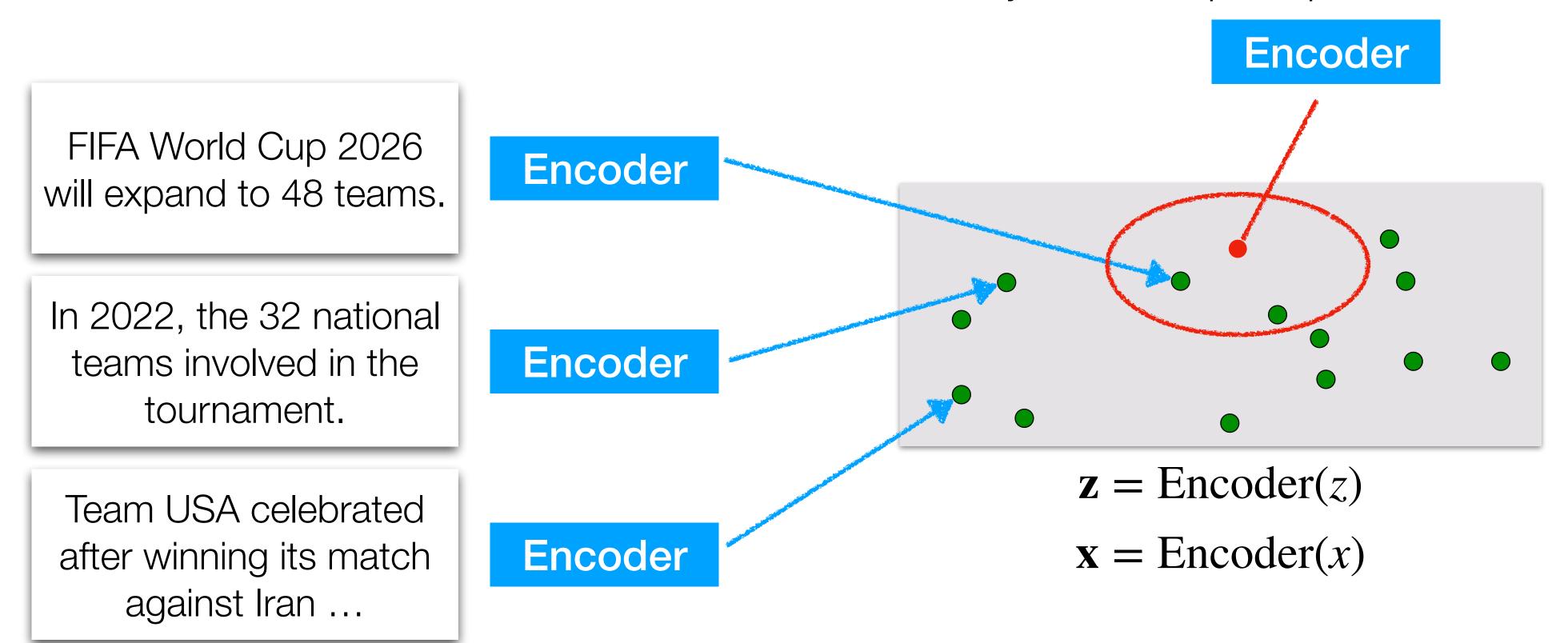
X = How many teams will participate in FIFA World Cup 2026?



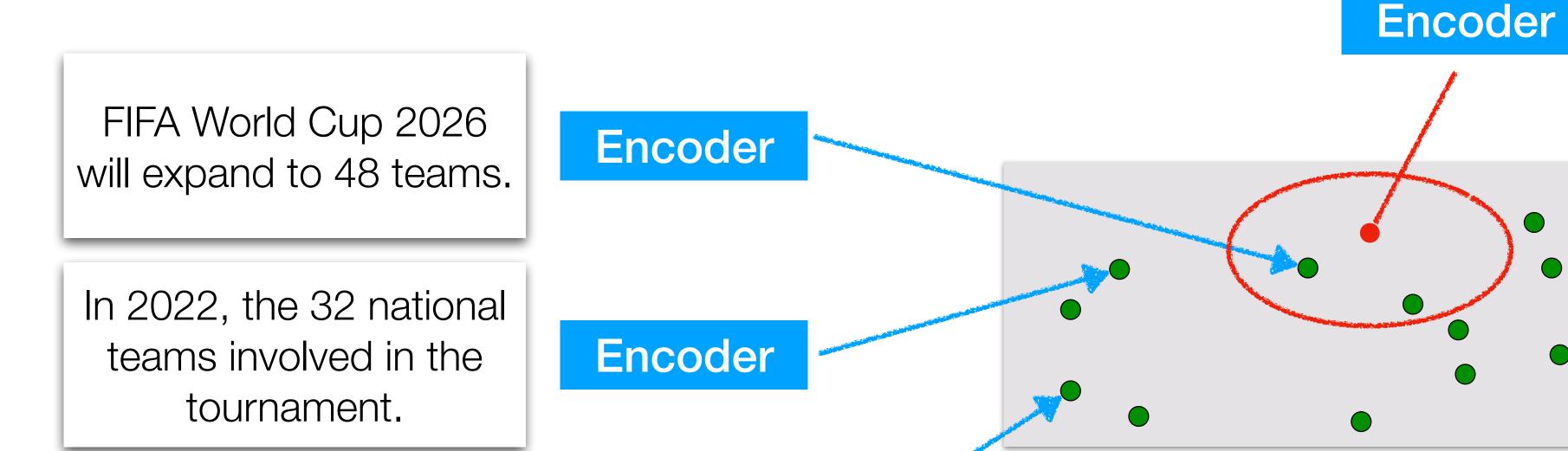
X = How many teams will participate in FIFA World Cup 2026?



X = How many teams will participate in FIFA World Cup 2026?



X = How many teams will participate in FIFA World Cup 2026?



Team USA celebrated after winning its match against Iran ...

 $\mathbf{z} = \text{Encoder}(z)$ $\mathbf{x} = \text{Encoder}(x)$

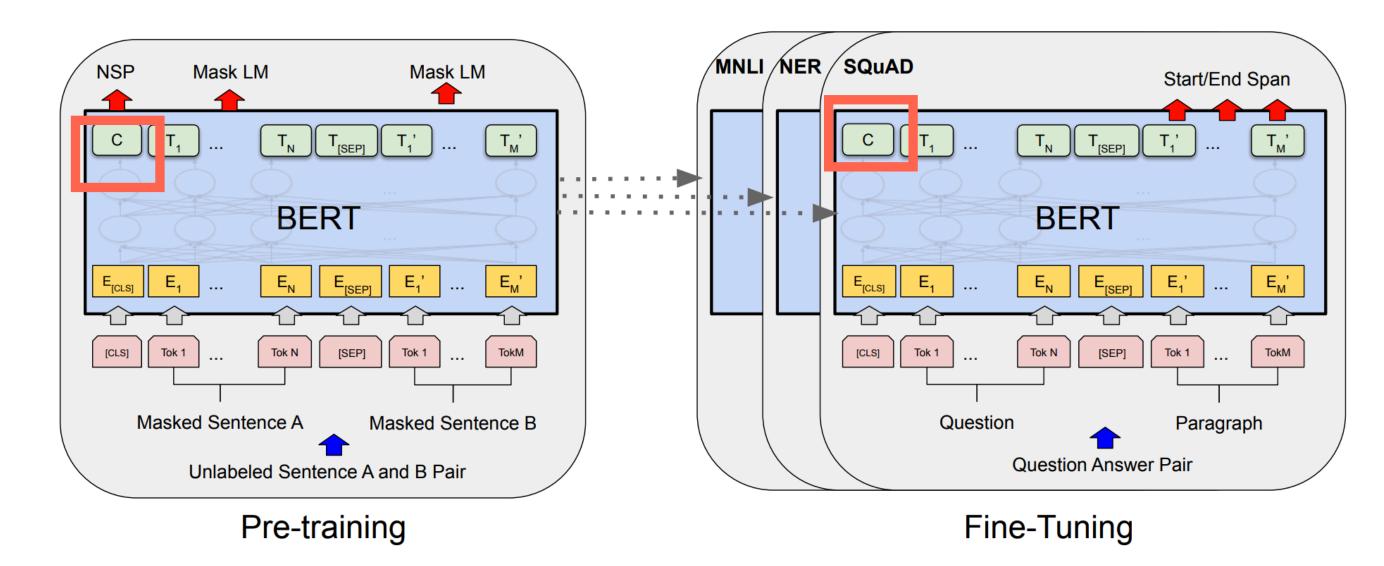
$$z_1, \ldots, z_k = \operatorname{argTop-}k(\mathbf{x} \cdot \mathbf{z})$$

k retrieved chunks

Dense Retrievers: Generating Embeddings

• Use output of [CLS] token in masked LMs \mathbb{R}^d

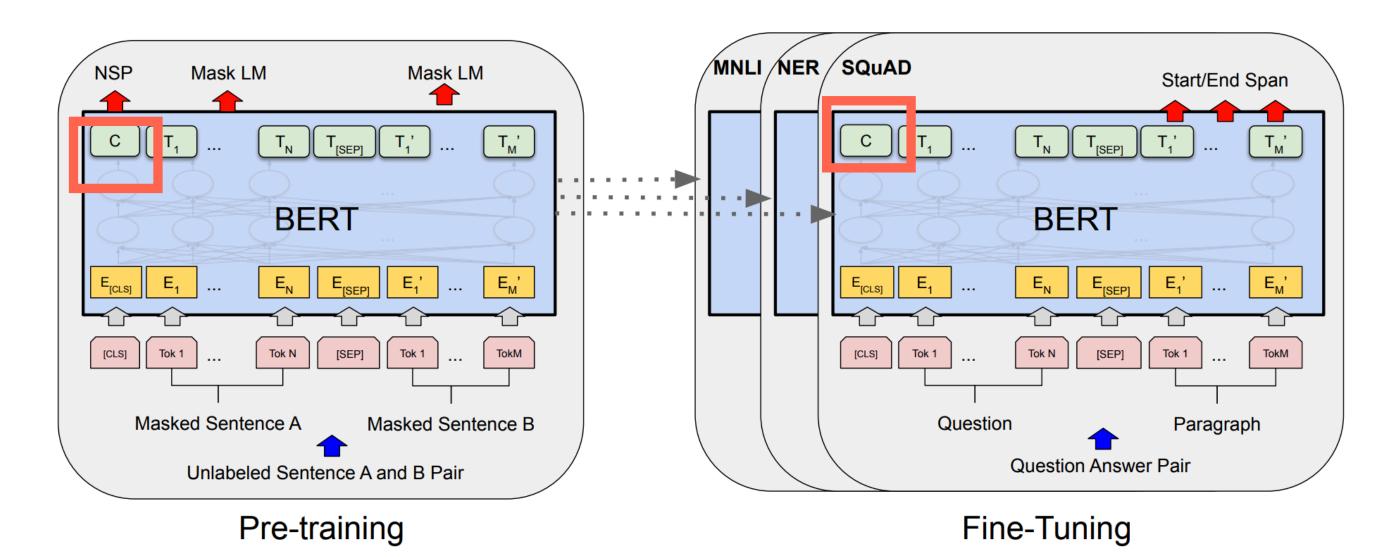
e.g., DPR



Dense Retrievers: Generating Embeddings

• Use output of [CLS] token in masked LMs \mathbb{R}^d

e.g., DPR



Mean / Max pooling of output vectors

e.g., SBERT, SGPT

	NLI	STSb
Pooling Strategy		
MEAN	80.78	87.44
MAX	79.07	69.92
CLS	79.80	86.62

Method	Class name	index_factory	Main parameters	Bytes/vector	Exhaust
Exact Search for L2	IndexFlatL2	"Flat"	d	4*d	yes
Exact Search for Inner Product	IndexFlatIP	"Flat"	d	4*d	yes
Hierarchical Navigable Small World graph exploration	IndexHNSWFlat	"HNSW,Flat"	d , M	4*d + x * M * 2 * 4	no
Inverted file with exact post- verification	IndexIVFFlat	"IVFx,Flat"	quantizer, d, nlists, metric	4*d + 8	no
Locality- Sensitive Hashing (binary flat index)	IndexLSH	-	d , nbits	ceil(nbits/8)	yes
Scalar quantizer (SQ) in flat mode	IndexScalarQuantizer	"SQ8"	d	d	yes
Product quantizer (PQ) in flat mode	IndexPQ	"PQx", "PQ"M"x"nbits	d, M, nbits	ceil(M * nbits / 8)	yes
IVF and scalar quantizer	IndexIVFScalarQuantizer	"IVFx,SQ4" "IVFx,SQ8"	quantizer, d, nlists, qtype	SQfp16: 2 * d + 8, SQ8: d + 8 or SQ4: d/2 + 8	no
IVFADC (coarse quantizer+PQ on residuals)	IndexIVFPQ	"IVFx,PQ"y"x"nbits	<pre>quantizer, d, nlists, M, nbits</pre>	ceil(M * nbits/8)+8	no

https://github.com/facebookresearch/faiss/wiki

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search (CVPR 2020 Tutorial)

Method	Class name	index_factory	Main parameters	Bytes/vector	Exhausti
Exact Search for L2	IndexFlatL2	"Flat"	d	4*d	yes
Exact Search for Inner Product	IndexFlatIP	"Flat"	d	4*d	yes
Hierarchical Navigable Small World graph exploration	IndexHNSWFlat	"HNSW,Flat"	d, M	4*d + x * M * 2 * 4	no
Inverted file with exact post- verification	IndexIVFFlat	"IVFx,Flat"	<pre>quantizer, d, nlists, metric</pre>	4*d + 8	no
Locality- Sensitive Hashing (binary flat index)	IndexLSH	-	d , nbits	ceil(nbits/8)	yes
Scalar quantizer (SQ) in flat mode	IndexScalarQuantizer	"SQ8"	d	d	yes
Product quantizer (PQ) in flat mode	IndexPQ	"PQx", "PQ"M"x"nbits	d, M, nbits	ceil(M * nbits / 8)	yes
IVF and scalar quantizer	IndexIVFScalarQuantizer	"IVFx,SQ4" "IVFx,SQ8"	<pre>quantizer, d, nlists, qtype</pre>	SQfp16: 2 * d + 8, SQ8: d + 8 or SQ4: d/2 + 8	no
IVFADC (coarse quantizer+PQ on residuals)	IndexIVFPQ	"IVFx,PQ"y"x"nbits	<pre>quantizer, d, nlists, M, nbits</pre>	ceil(M * nbits/8)+8	no

Exact search (still fast for 10^6~10^7 scale)

https://github.com/facebookresearch/faiss/wiki

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search (CVPR 2020 Tutorial)

Method	Class name	index_factory	Main parameters	Bytes/vector	Exhausti
Exact Search for L2	IndexFlatL2	"Flat"	d	4*d	yes
Exact Search for Inner Product	IndexFlatIP	"Flat"	d	4*d	yes
Hierarchical Navigable Small World graph exploration	IndexHNSWFlat	"HNSW,Flat"	d, M	4*d + x * M * 2 * 4	no
Inverted file with exact post- verification	IndexIVFFlat	"IVFx,Flat"	quantizer, d, nlists, metric	4*d + 8	no
Locality- Sensitive Hashing (binary flat index)	IndexLSH	-	d , nbits	ceil(nbits/8)	yes
Scalar quantizer (SQ) in flat mode	IndexScalarQuantizer	"SQ8"	d	d	yes
Product quantizer (PQ) in flat mode	IndexPQ	"PQx", "PQ"M"x"nbits	d, M, nbits	ceil(M * nbits / 8)	yes
IVF and scalar quantizer	IndexIVFScalarQuantizer	"IVFx,SQ4" "IVFx,SQ8"	<pre>quantizer, d, nlists, qtype</pre>	SQfp16: 2 * d + 8, SQ8: d + 8 or SQ4: d/2 + 8	no
IVFADC (coarse quantizer+PQ on residuals)	IndexIVFPQ	"IVFx,PQ"y"x"nbits	<pre>quantizer, d, nlists, M, nbits</pre>	ceil(M * nbits/8)+8	no

Exact search (still fast for 10^6~10^7 scale)

Approximate search (faster but more memory)

https://github.com/facebookresearch/faiss/wiki

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search (CVPR 2020 Tutorial)

Method	Class name	index_factory	Main parameters	Bytes/vector	Exhausti
Exact Search for L2	IndexFlatL2	"Flat"	d	4*d	yes
Exact Search for Inner Product	IndexFlatIP	"Flat"	d	4*d	yes
Hierarchical Navigable Small World graph exploration	IndexHNSWFlat	"HNSW, Flat"	d, M	4*d + x * M * 2 * 4	no
Inverted file with exact post- verification	IndexIVFFlat	"IVFx,Flat"	<pre>quantizer, d, nlists, metric</pre>	4*d + 8	no
Locality- Sensitive Hashing (binary flat index)	IndexLSH	-	d , nbits	ceil(nbits/8)	yes
Scalar quantizer (SQ) in flat mode	IndexScalarQuantizer	"SQ8"	d	d	yes
Product quantizer (PQ) in flat mode	IndexPQ	"PQx", "PQ"M"x"nbits	d , M , nbits	ceil(M * nbits / 8)	yes
IVF and scalar quantizer	IndexIVFScalarQuantizer	"IVFx,SQ4" "IVFx,SQ8"	<pre>quantizer, d, nlists, qtype</pre>	SQfp16: 2 * d + 8, SQ8: d + 8 or SQ4: d/2 + 8	no
IVFADC (coarse quantizer+PQ on residuals)	IndexIVFPQ	"IVFx,PQ"y"x"nbits	quantizer, d, nlists, M, nbits	ceil(M * nbits/8)+8	no

Exact search (still fast for 10⁶~10⁷ scale)

Approximate search (faster but more memory)

Reduce index size with quantization

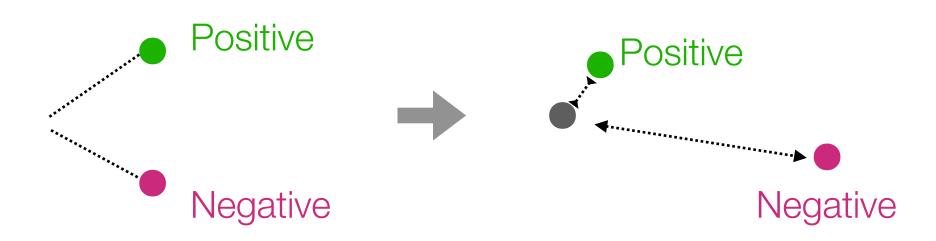
https://github.com/facebookresearch/faiss/wiki

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search (CVPR 2020 Tutorial)

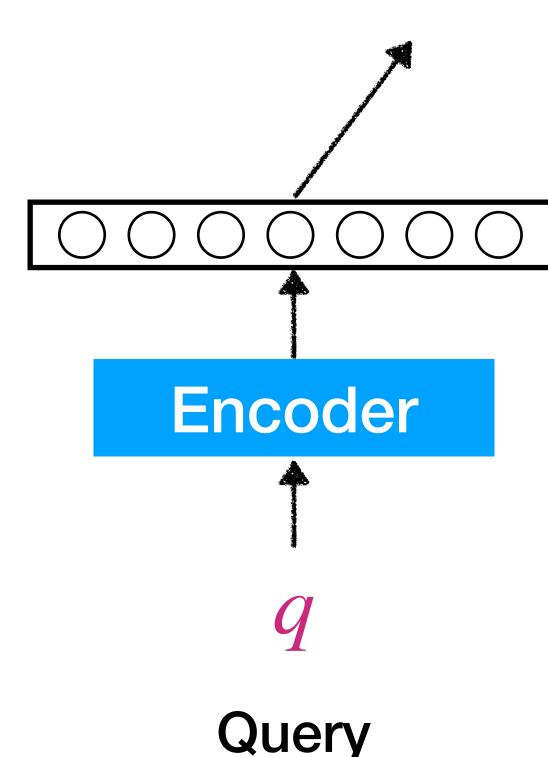
Contrastive learning **Dot Product Similarity** Positive Negative Encoder Encoder Text chunks Query

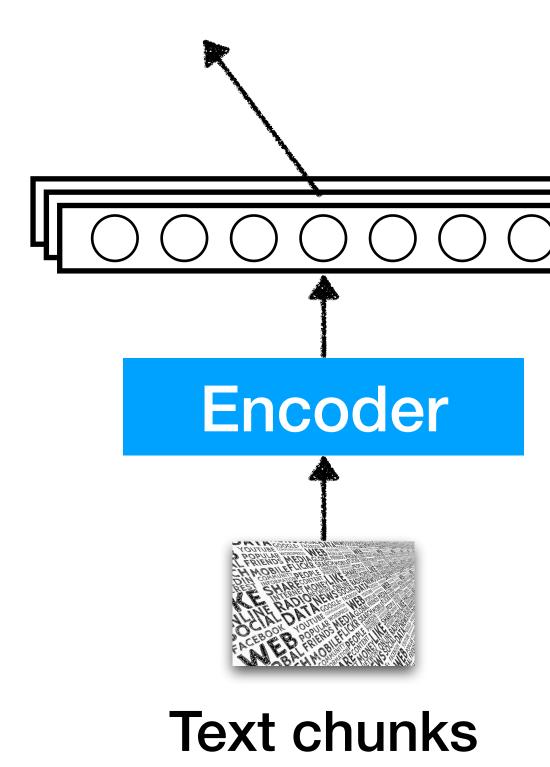
Dot Product Similarity Encoder Encoder Text chunks Query

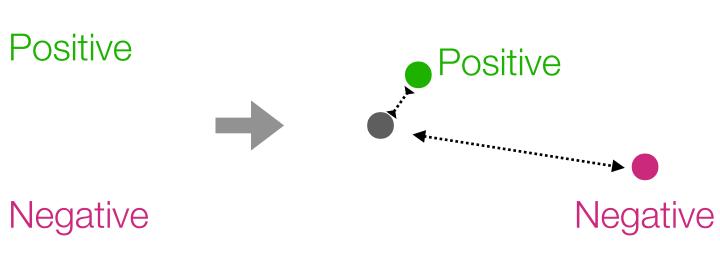
Contrastive learning



Dot Product Similarity

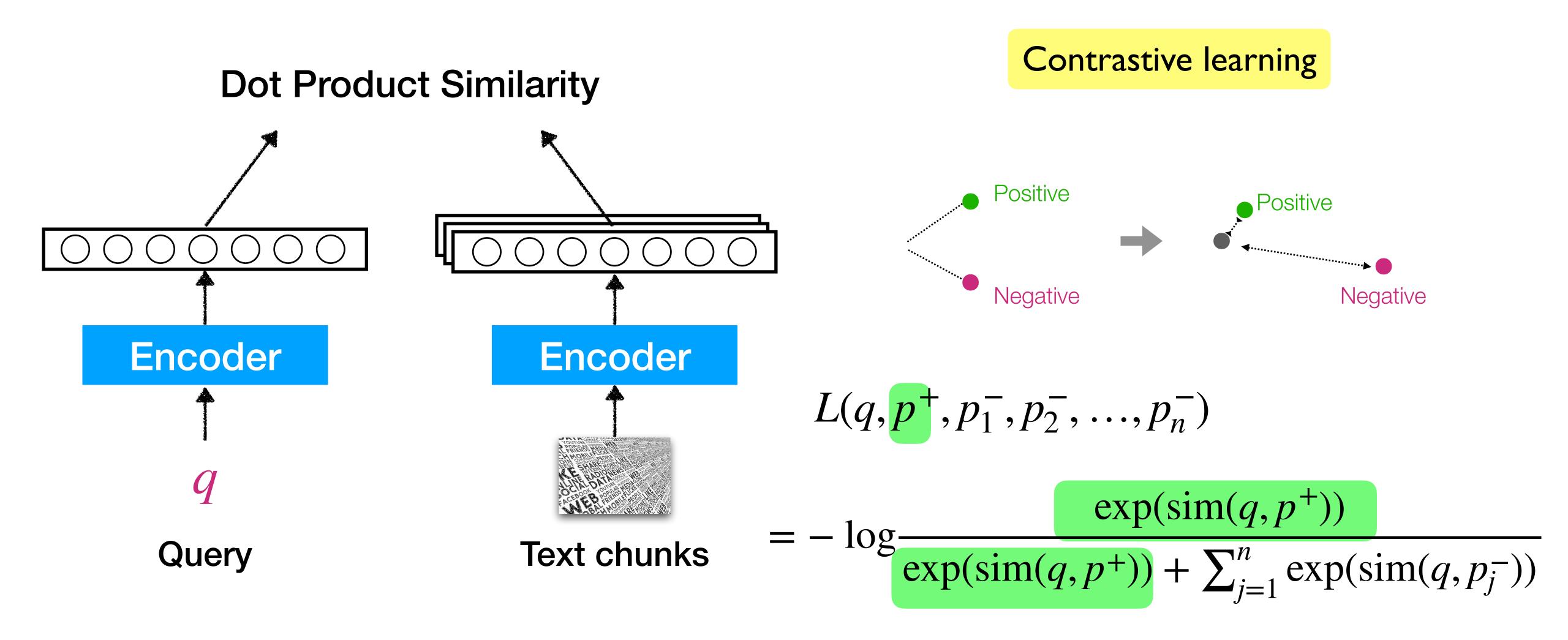


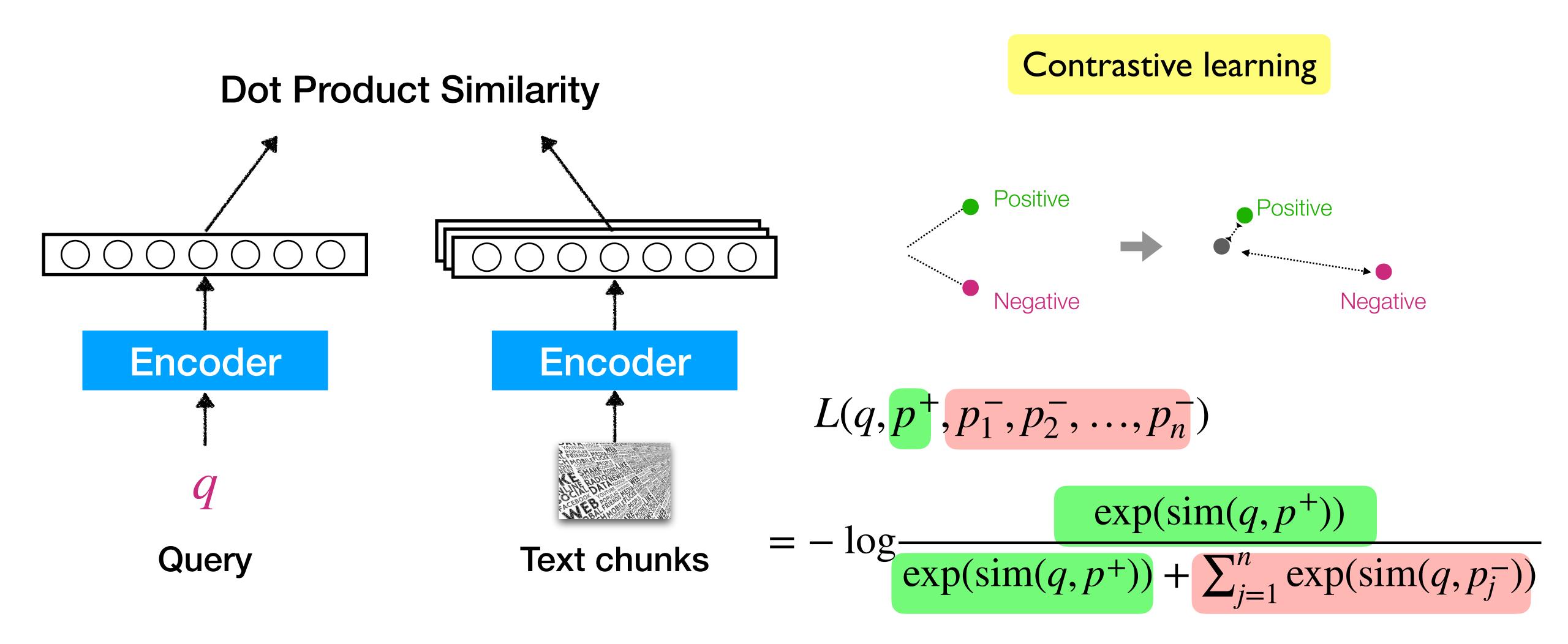




$$L(q, p^+, p_1^-, p_2^-, ..., p_n^-)$$

$$= -\log \frac{\exp(\text{sim}(q, p^{+}))}{\exp(\text{sim}(q, p^{+})) + \sum_{j=1}^{n} \exp(\text{sim}(q, p_{j}^{-}))}$$



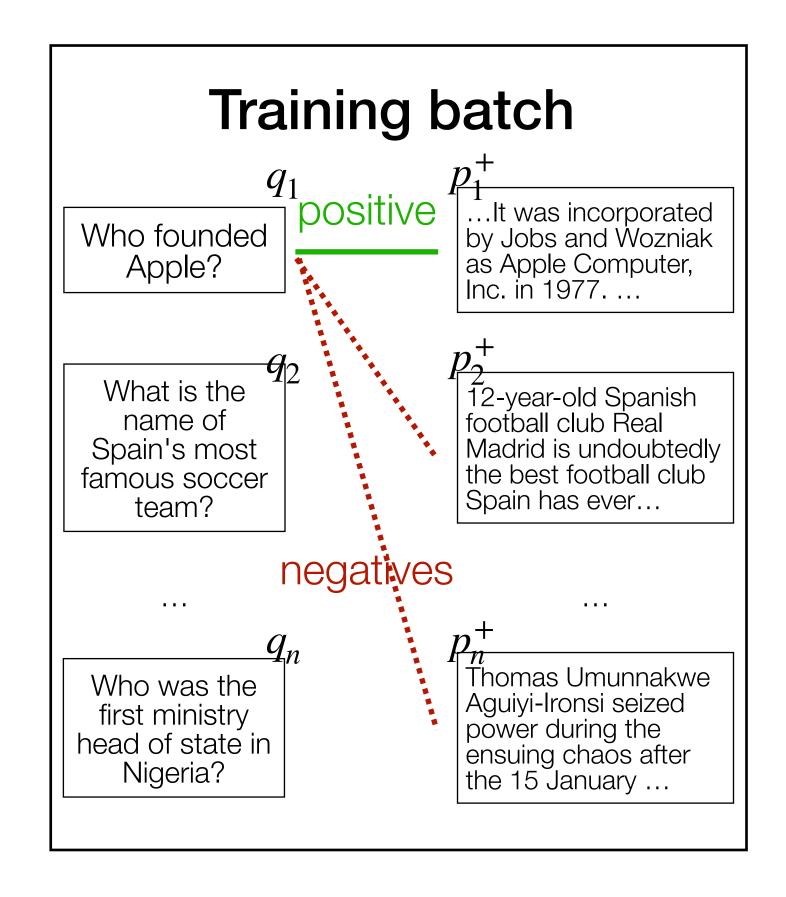


$$L(q, p^+, p_1^-, p_2^-, ..., p_n^-)$$

$$= -\log \frac{\exp(\sin(q, p^+))}{\exp(\sin(q, p^+)) + \sum_{j=1}^n \exp(\sin(q, p_j^-))}$$

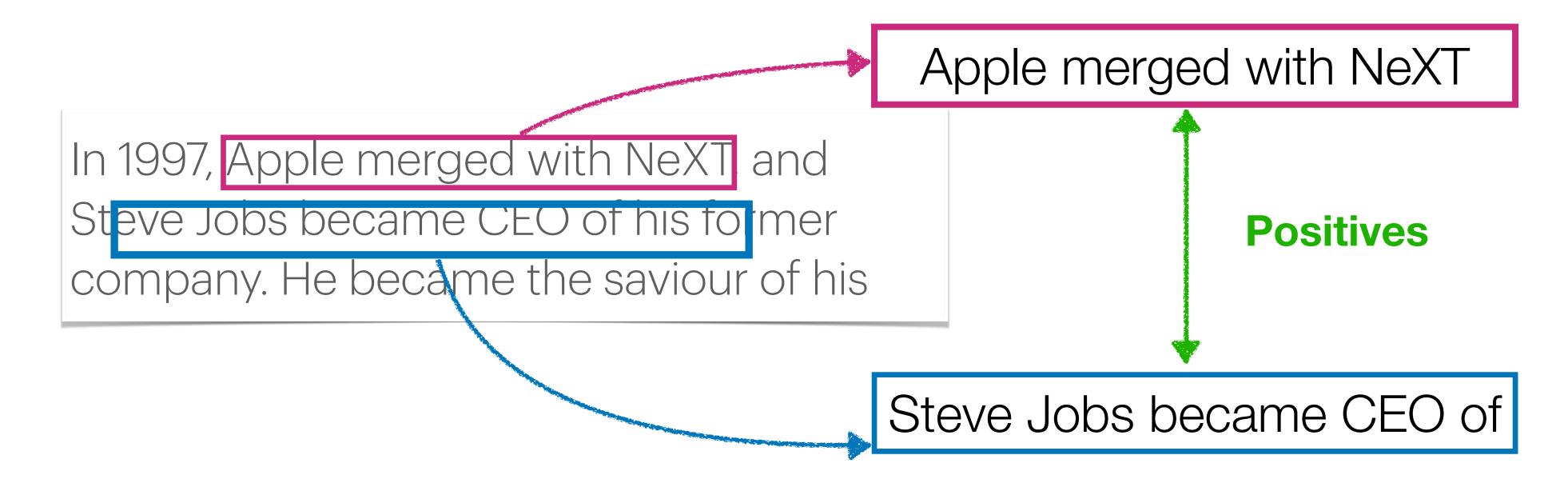
In-batch negatives

Hard negative retrieved by the same / another model



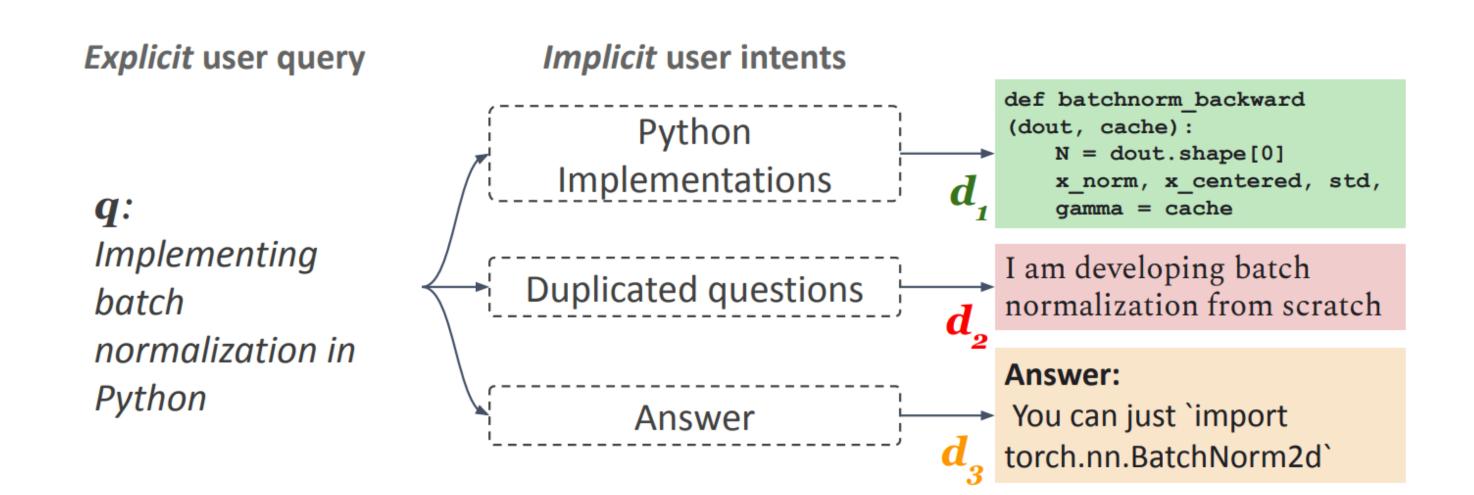
Unsupervised Training

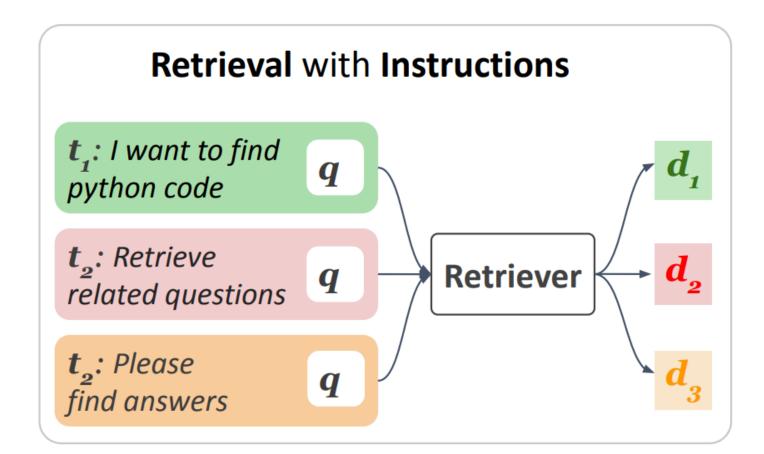
Independent Cropping



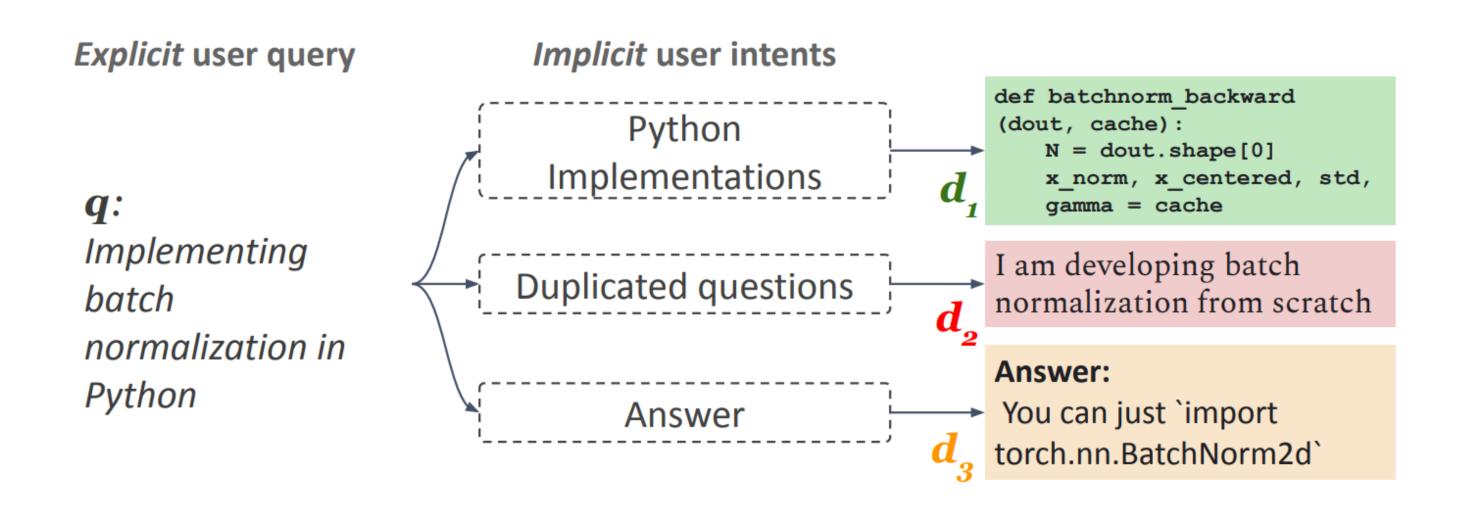
Unsupervised dense retrieval model!

Instruction Tuning for Retriever

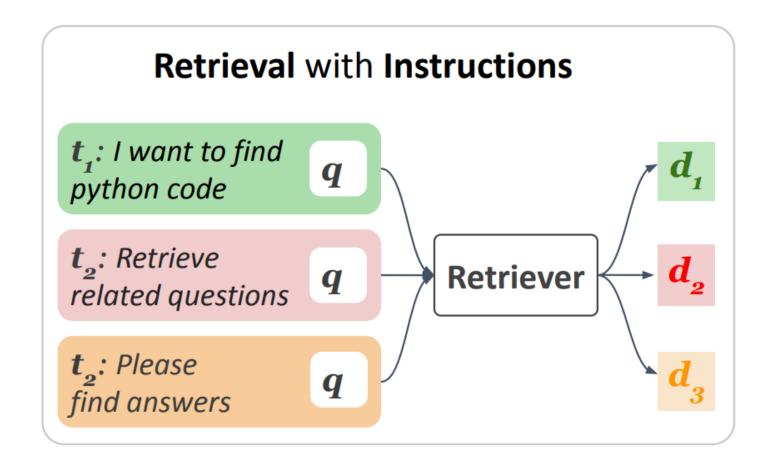


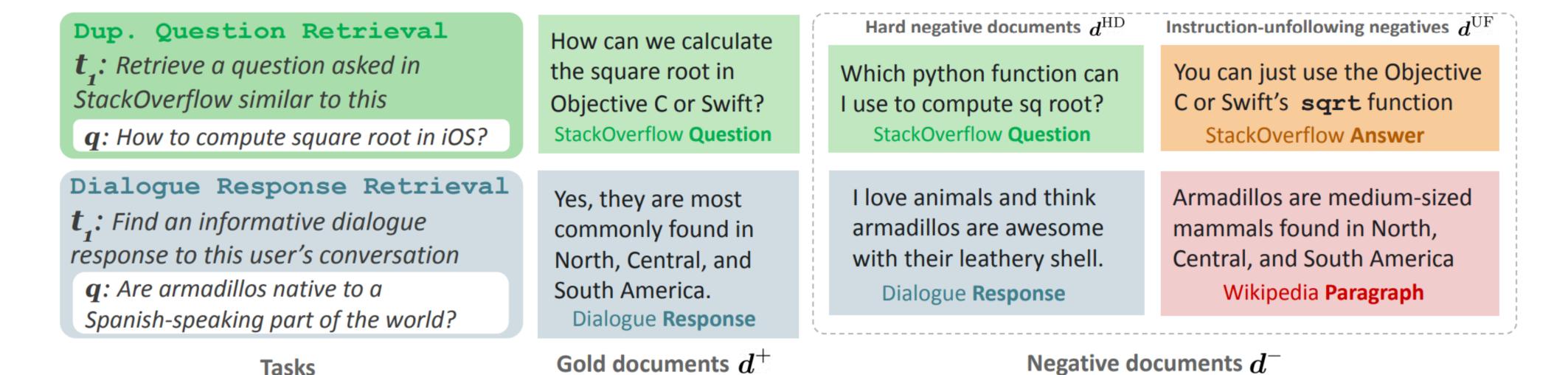


Instruction Tuning for Retriever

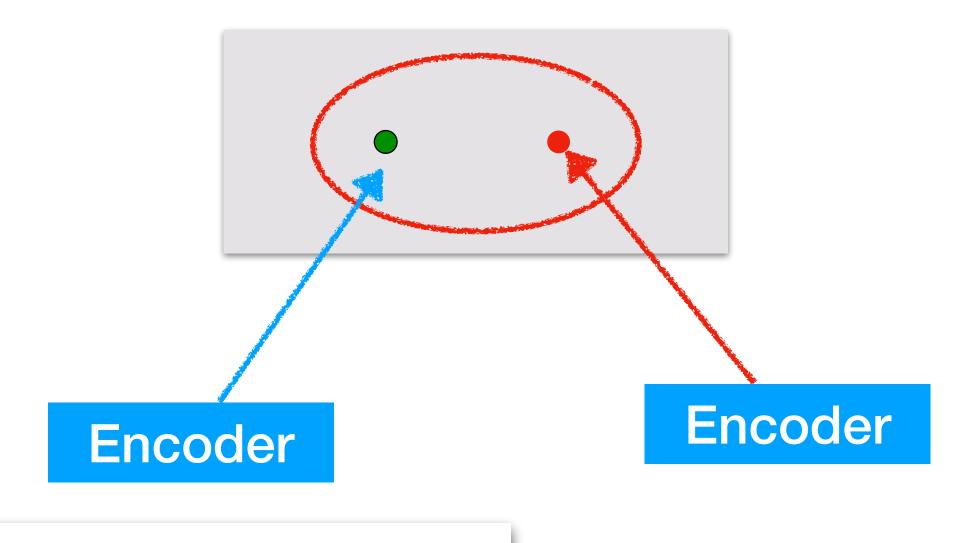


Tasks





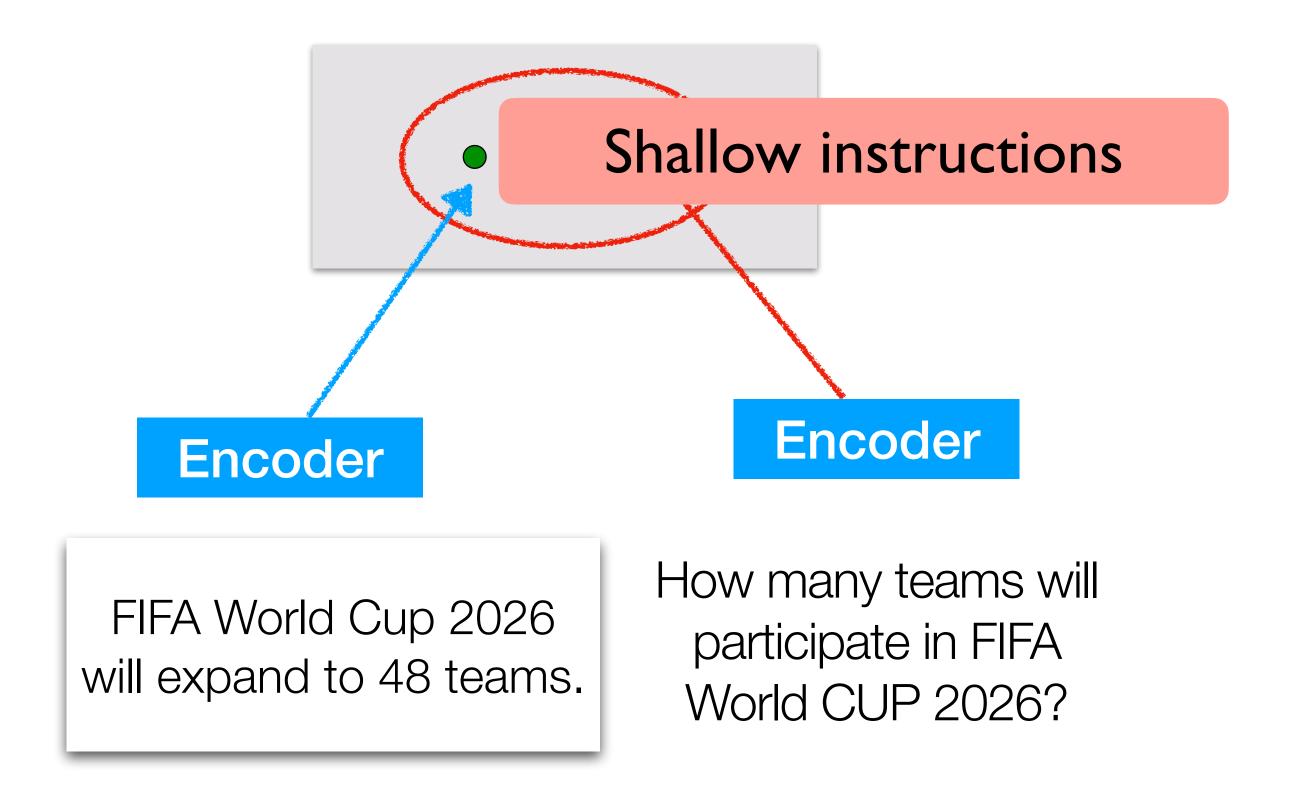
Bi-Encoder



FIFA World Cup 2026 will expand to 48 teams.

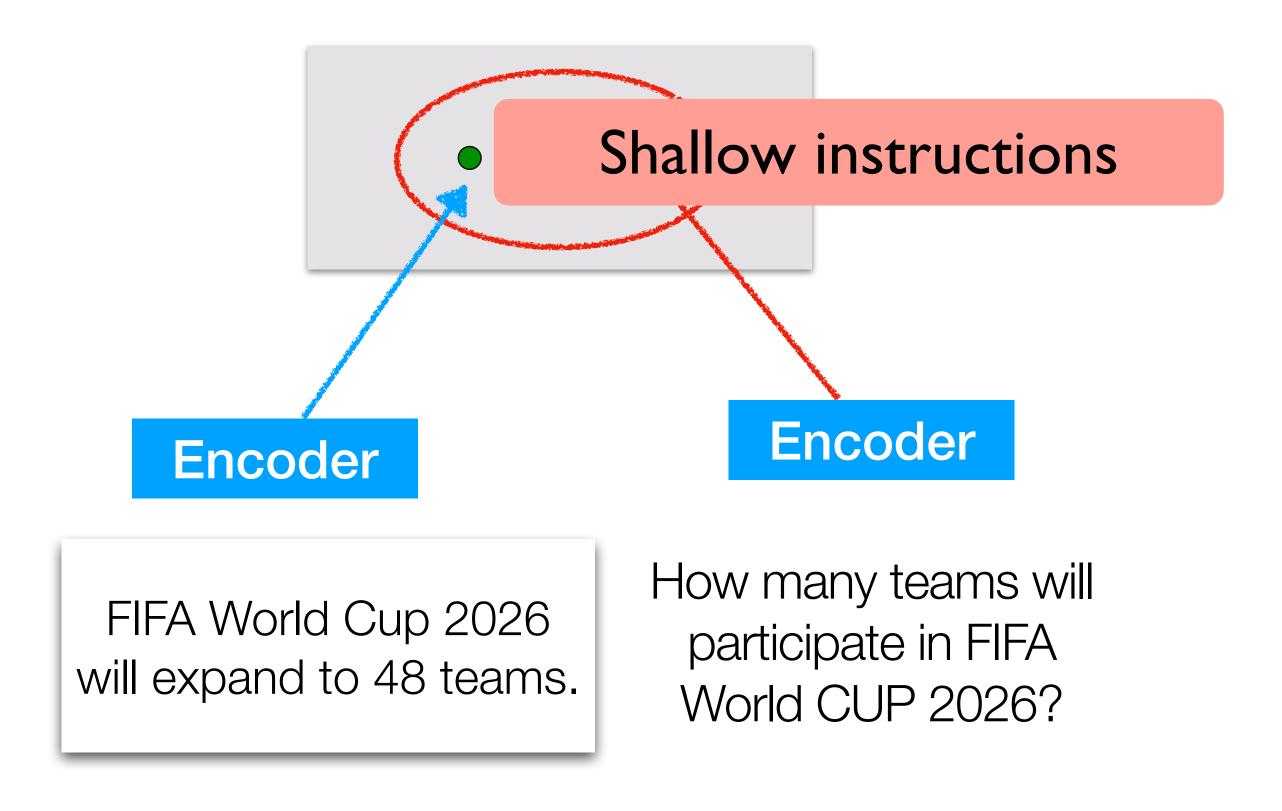
How many teams will participate in FIFA World CUP 2026?

Bi-Encoder



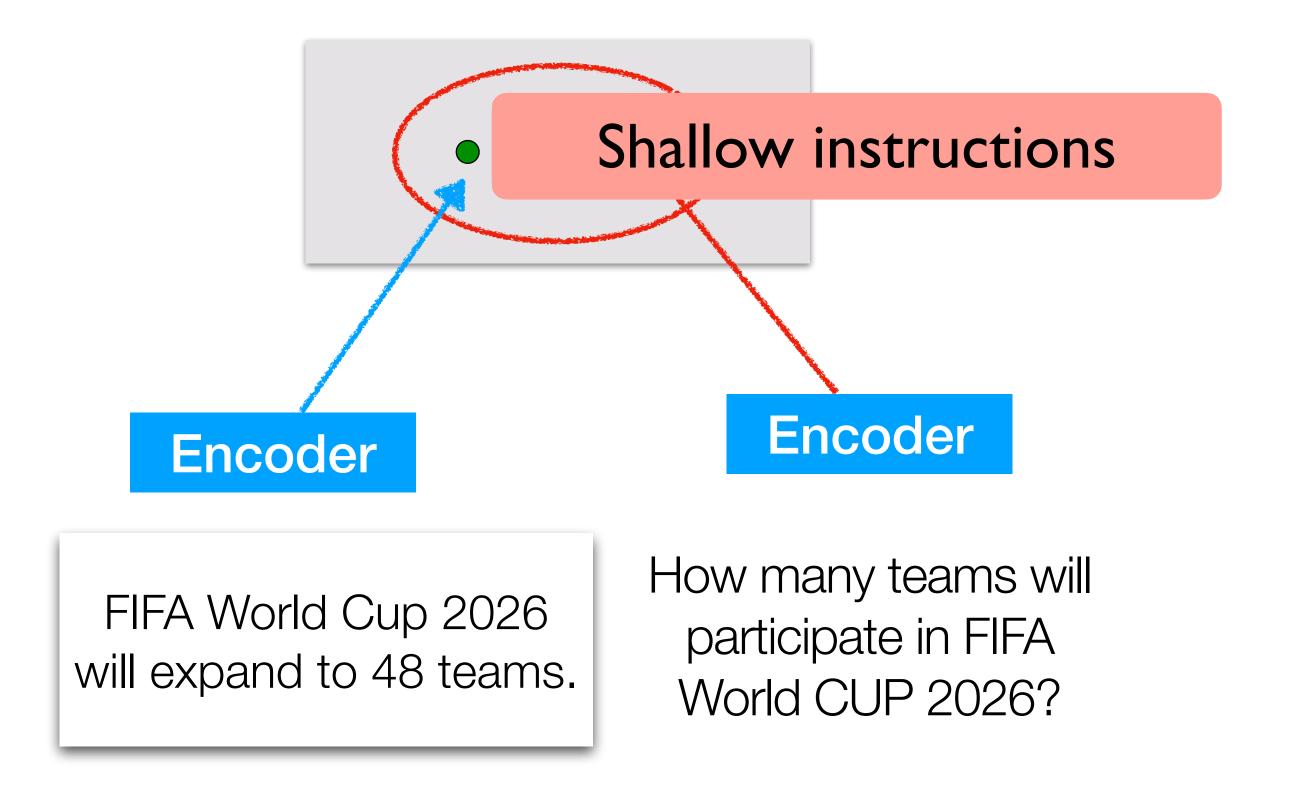
Bi-Encoder

Cross-Encoder



Bi-Encoder

Cross-Encoder



FIFA World Cup 2026 will expand to 48 teams.

How many teams will participate in FIFA World Cup 2026?

Bi-Encoder

Shallow instructions Encoder Encoder How many teams will FIFA World Cup 2026 participate in FIFA will expand to 48 teams. World CUP 2026?

Cross-Encoder

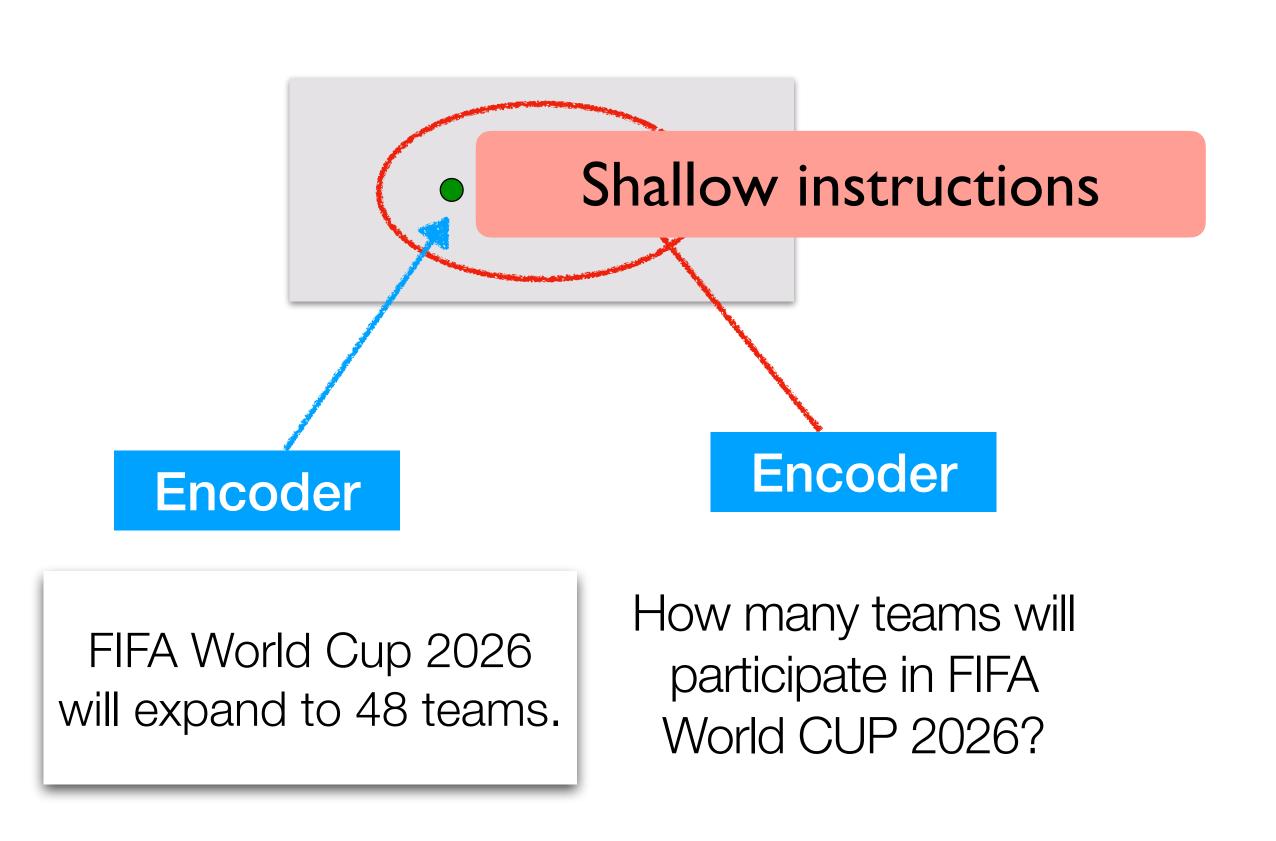
Classifier

Encoder

FIFA World Cup 2026 will expand to 48 teams.

How many teams will participate in FIFA World Cup 2026?

Bi-Encoder



Cross-Encoder

How many teams will participate in FIFA World Cup 2026?

Evaluation of unranked retrieval sets

$$Precision = \frac{\#(relevant items \ retrieved)}{\#(retrieved \ items)} \qquad Recall = \frac{\#(relevant items \ retrieved)}{\#(relevant items)}$$

Evaluation of **unranked** retrieval sets

$$Precision = \frac{\#(relevant items \ retrieved)}{\#(retrieved items)} \qquad Recall = \frac{\#(relevant items \ retrieved)}{\#(relevant items)}$$

Evaluation of ranked retrieval sets

$$MAP(Q) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} \frac{1}{m_j} \sum_{k=1}^{m_j} Precision(R_{jk}) \quad NDCG(Q, k) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} Z_{kj} \sum_{m=1}^{k} \frac{2^{R(j, m)} - 1}{\log_2(1 + m)}$$

Evaluation of **unranked** retrieval sets

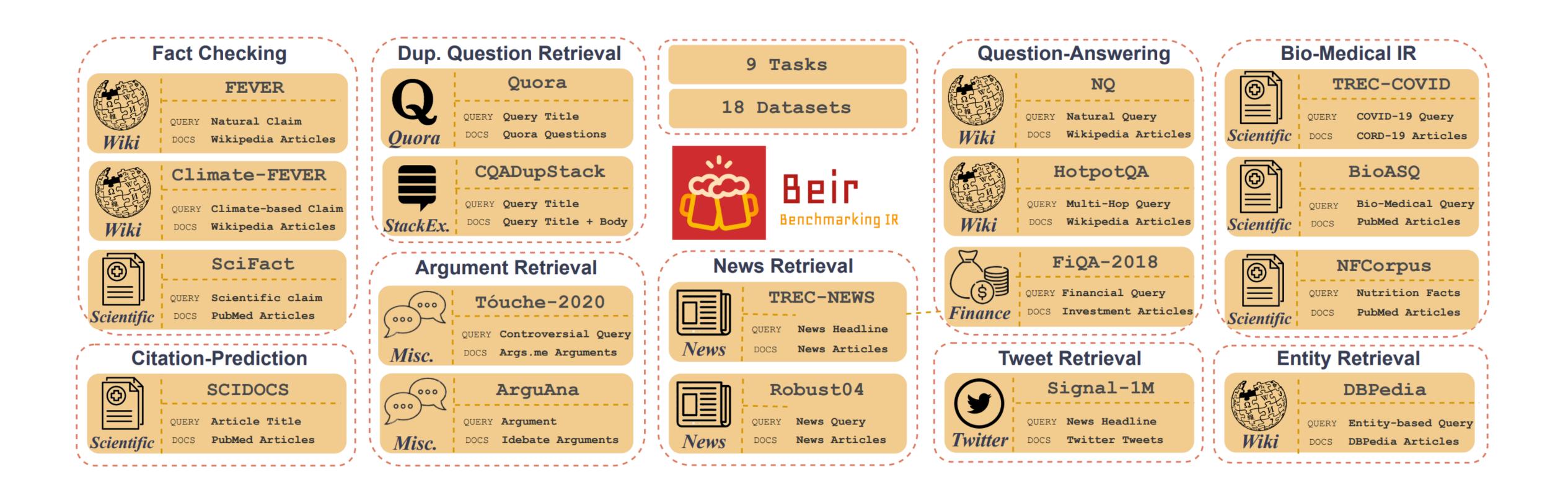
$$Precision = \frac{\#(relevant items retrieved)}{\#(retrieved items)} \qquad Recall = \frac{\#(relevant items retrieved)}{\#(relevant items)}$$

Evaluation of ranked retrieval sets

$$MAP(Q) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} \frac{1}{m_j} \sum_{k=1}^{m_j} Precision(R_{jk}) \quad NDCG(Q, k) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} Z_{kj} \sum_{m=1}^{k} \frac{2^{R(j, m)} - 1}{\log_2(1 + m)}$$

nDCG@10 is widely used (e.g., BEIR)

Retrieval Benchmarks: BEIR and MTEB



	BM25	${ m BM25+CE}$
MS MARCO	22.8	41.3
Trec-COVID	65.6	75.7
NFCorpus	32.5	35.0
NQ	32.9	53.3
HotpotQA	60.3	70.7
FiQA	23.6	34.7
ArguAna	31.5	31.1
Touche-2020	36.7	27.1
CQADupStack	29.9	37.0.
Quora	78.9	82.5
DBPedia	31.3	40.9
Scidocs	15.8	16.6
FEVER	75.3	81.9
Climate-FEVER	21.3	25.3
Scifact	66.5	68.8
Avg. w/o CQA	44.0	49.5
Avg.	43.0	48.6
Best on	1	3

	BM25	BM25+CE
MS MARCO	22.8	41.3
Trec-COVID	65.6	75.7
NFCorpus	32.5	35.0
NQ	32.9	53.3
HotpotQA	60.3	70.7
FiQA	23.6	34.7
ArguAna	31.5	31.1
Touche-2020	36.7	27.1
CQADupStack	29.9	37.0.
Quora	78.9	82.5
DBPedia	31.3	40.9
Scidocs	15.8	16.6
FEVER	75.3	81.9
Climate-FEVER	21.3	25.3
Scifact	66.5	68.8
Avg. w/o CQA	44.0	49.5
Avg.	43.0	48.6
Best on	1	3

Adding CE (cross-encoder) helps

	BM25	${ m BM25+CE}$	DPR
MS MARCO	22.8	41.3	17.7
Trec-COVID	65.6	75.7	33.2
NFCorpus	32.5	35.0	18.9
NQ	32.9	53.3	47.4
HotpotQA	60.3	70.7	39.1
FiQA	23.6	34.7	11.2
ArguAna	31.5	31.1	17.5
Touche-2020	36.7	27.1	13.1
CQADupStack	29.9	37.0.	15.3
Quora	78.9	82.5	24.8
DBPedia	31.3	40.9	26.3
Scidocs	15.8	16.6	7.7
FEVER	75.3	81.9	56.2
Climate-FEVER	21.3	25.3	14.8
Scifact	66.5	68.8	31.8
Avg. w/o CQA	44.0	49.5	26.3
Avg.	43.0	48.6	25.5
Best on	1	3	0

Adding CE (cross-encoder) helps

	BM25	${ m BM25+CE}$	DPR
MS MARCO	22.8	41.3	17.7
Trec-COVID	65.6	75.7	33.2
NFCorpus	32.5	35.0	18.9
NQ	32.9	53.3	47.4
HotpotQA	60.3	70.7	39.1
FiQA	23.6	34.7	11.2
ArguAna	31.5	31.1	17.5
Touche-2020	36.7	27.1	13.1
CQADupStack	29.9	37.0.	15.3
Quora	78.9	82.5	24.8
DBPedia	31.3	40.9	26.3
Scidocs	15.8	16.6	7.7
FEVER	75.3	81.9	56.2
Climate-FEVER	21.3	25.3	14.8
Scifact	66.5	68.8	31.8
Avg. w/o CQA	44.0	49.5	26.3
Avg.	43.0	48.6	25.5
Best on	1	3	0

Adding CE (cross-encoder) helps

Dense retrievers could struggle in OOD

Contriever

				_		
	BM25	BM25+CE	DPR		Ours	Ours+CE
MS MARCO	22.8	41.3	17.7	Ī	40.7	47.0
Trec-COVID	65.6	75.7	33.2		59.6	70.1
NFCorpus	32.5	35.0	18.9		32.8	34.4
NQ	32.9	53.3	47.4		49.8	57.7
HotpotQA	60.3	70.7	39.1		63.8	71.5
FiQA	23.6	34.7	11.2		32.9	36.7
ArguAna	31.5	31.1	17.5		44.6	41.3
Touche-2020	36.7	27.1	13.1		23.0	29.8
CQADupStack	29.9	37.0.	15.3		34.5	37.7
Quora	78.9	82.5	24.8		86.5	82.4
DBPedia	31.3	40.9	26.3		41.3	47.1
Scidocs	15.8	16.6	7.7		16.5	17.1
FEVER	75.3	81.9	56.2		75.8	81.9
Climate-FEVER	21.3	25.3	14.8		23.7	25.8
Scifact	66.5	68.8	31.8		67.7	69.2
Avg. w/o CQA	44.0	49.5	26.3	Ī	47.5	51.2
Avg.	43.0	48.6	25.5		46.6	50.2
Best on	1	3	0		1	9

Adding CE (cross-encoder) helps

Dense retrievers could struggle in OOD

Izacard et al. TMLR 2022. Unsupervised Dense Information Retrieval with Contrastive Learning.

Contriever

				_		
	BM25	${ m BM25+CE}$	DPR		Ours	Ours+CE
MS MARCO	22.8	41.3	17.7		40.7	47.0
Trec-COVID	65.6	75.7	33.2		59.6	70.1
NFCorpus	32.5	35.0	18.9		32.8	34.4
NQ	32.9	53.3	47.4		49.8	57.7
HotpotQA	60.3	70.7	39.1		63.8	71.5
FiQA	23.6	34.7	11.2		32.9	36.7
ArguAna	31.5	31.1	17.5		44.6	41.3
Touche-2020	36.7	27.1	13.1		23.0	29.8
CQADupStack	29.9	37.0.	15.3		34.5	37.7
Quora	78.9	82.5	24.8		86.5	82.4
DBPedia	31.3	40.9	26.3		41.3	47.1
Scidocs	15.8	16.6	7.7		16.5	17.1
FEVER	75.3	81.9	56.2		75.8	81.9
Climate-FEVER	21.3	25.3	14.8		23.7	25.8
Scifact	66.5	68.8	31.8		67.7	69.2
Avg. w/o CQA	44.0	49.5	26.3		47.5	51.2
Avg.	43.0	48.6	25.5		46.6	50.2
Best on	1	3	0		1	9

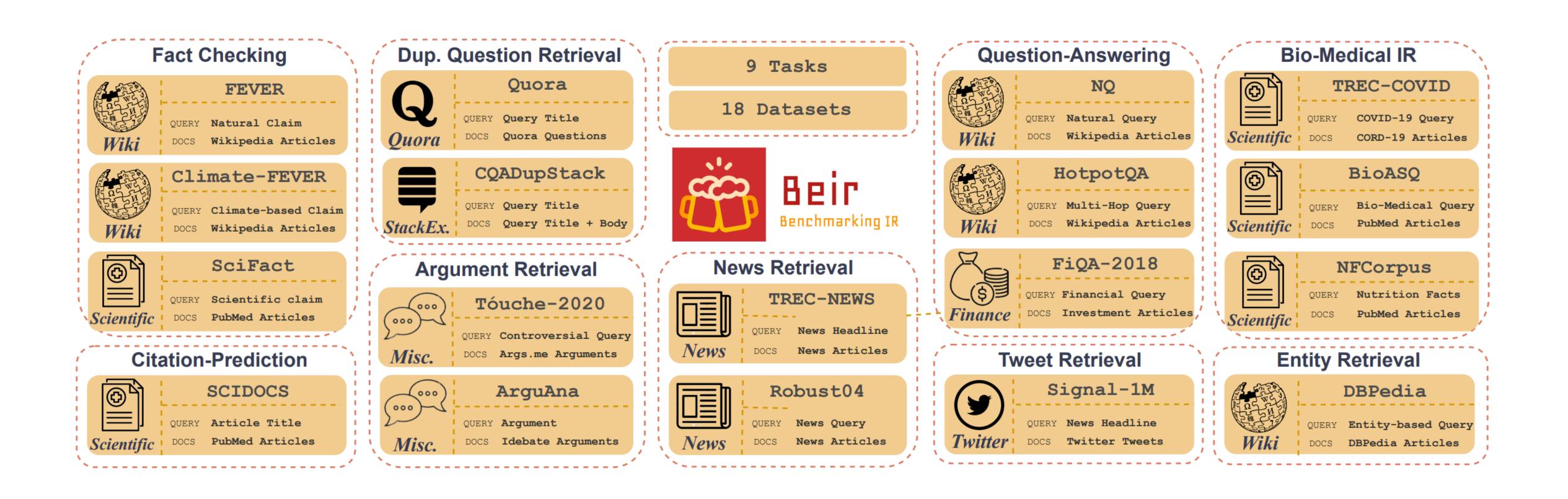
Adding CE (cross-encoder) helps

Dense retrievers could struggle in OOD

Unsupervised training helps in

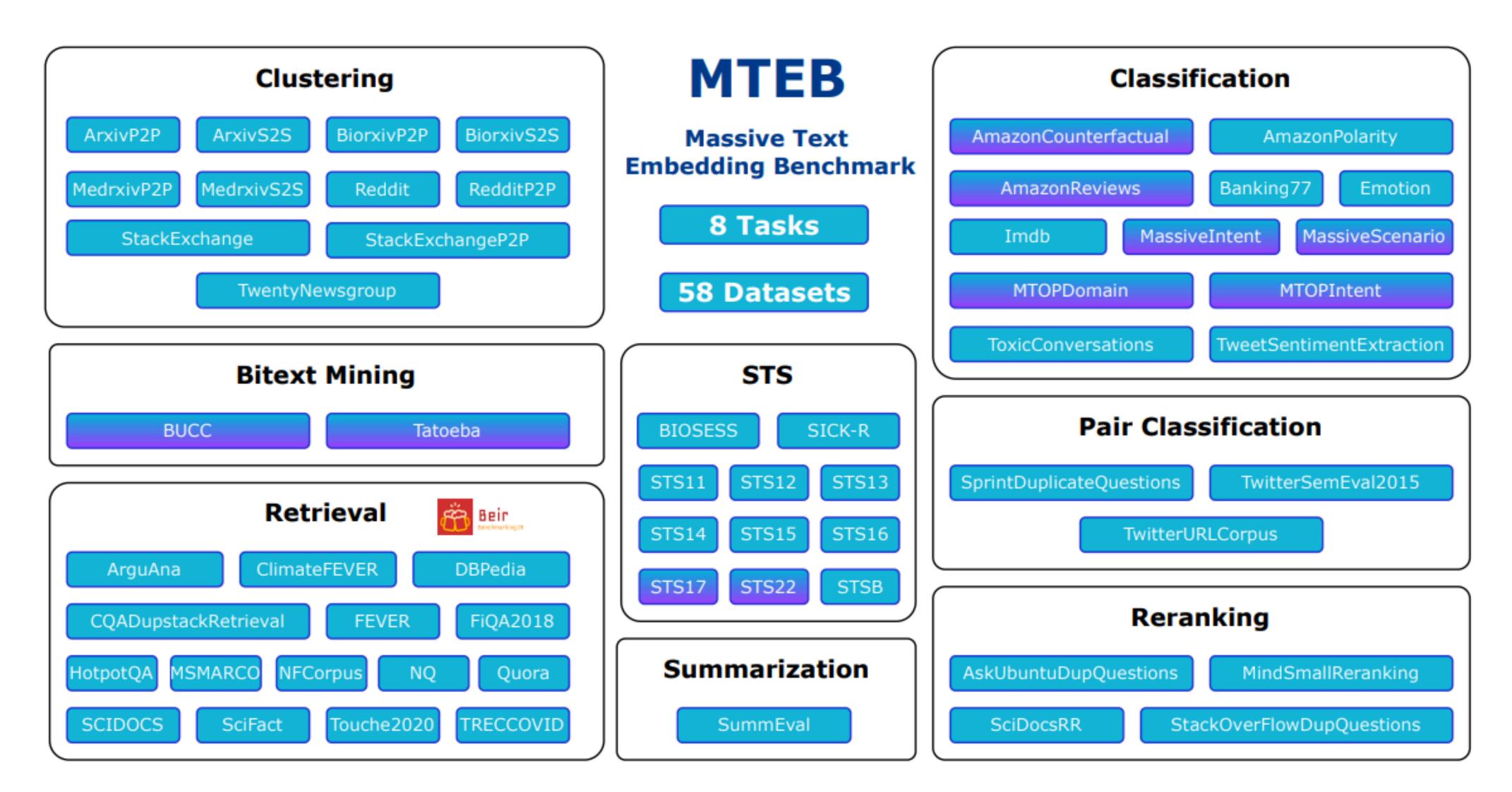
Izacard et al. TMLR 2022. Unsupervised Dense Information Retrieval with Contrastive Learning.

Retrieval Benchmarks: BEIR and MTEB



Retrieval Benchmarks: BEIR and MTEB

Retrieval Benchmarks: BEIR and MTEB



Part 2: Retriever

Thakur et al. 2021. NeurIPS D&B. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models.

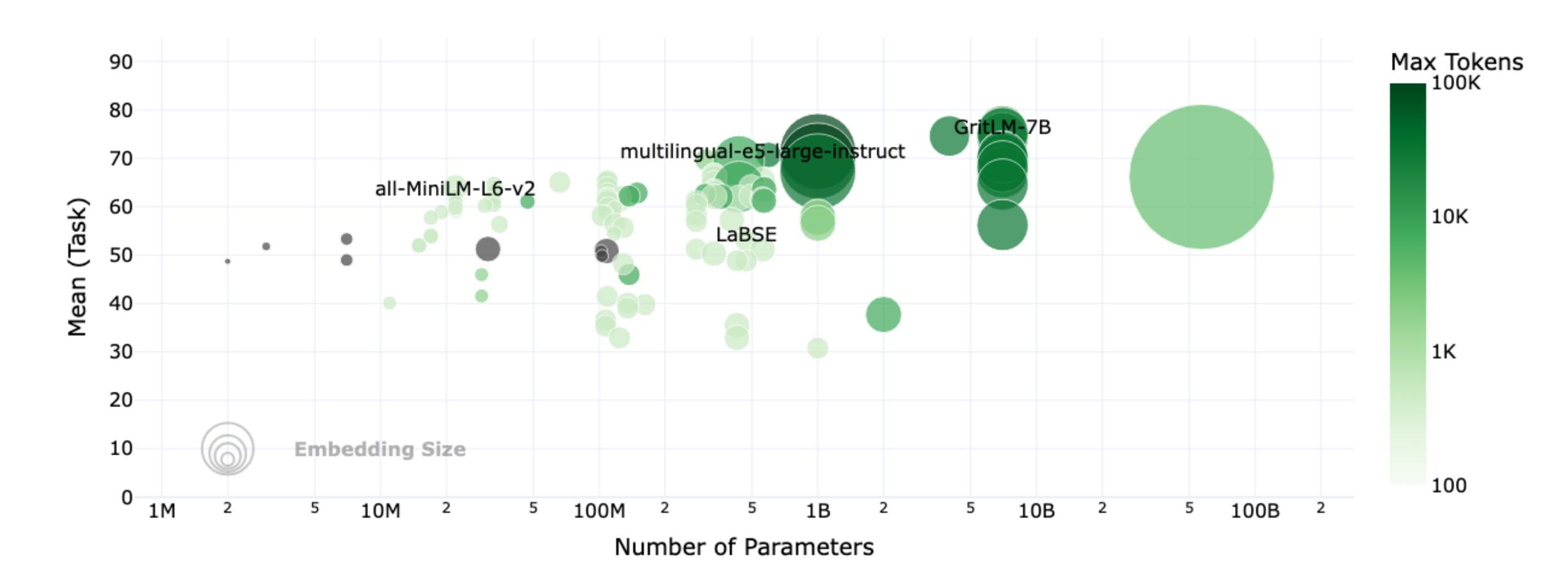
Muennighoff et al. 2022. MTEB: Massive Text Embedding Benchmark.

Rank (Bor	Model	Zero-shot	Memory U	Number of P	Embedding D	Max Tokens	Mean (T	Mean (TaskT	Classificat
1	<u>QZhou-Embedding</u>	53%	29070	7B	3584	8192	75.97	69.52	88.97
2	LGAI-Embedding-Preview	56%	27125	7B	4096	32768	74.12	68.40	89.97
3	Seed1.5-Embedding	56%	Unknown	Unknown	2048	32768	74.76	68.56	89.88
4	<u>Qwen3-Embedding-8B</u>	95%	28866	7B	4096	32768	75.22	68.71	90.43
5	Seed1.6-embedding	53%	Unknown	Unknown	2048	32768	74.07	67.98	92.42
6	<u>Qwen3-Embedding-4B</u>	95%	15341	4B	2560	32768	74.60	68.10	89.84
7	<u>gemini-embedding-001</u>	95%	Unknown	Unknown	3072	2048	73.30	67.67	90.05
8	<u>jasper en vision language v</u> <u>1</u>	56%	3802	1B	8960	131072	71.41	66.65	90.27
9	<u>Linq-Embed-Mistral</u>	95%	13563	7B	4096	32768	69.80	65.29	83.00
10	SFR-Embedding-Mistral	85%	13563	7B	4096	32768	69.31	64.94	80.47
11	NV-Embed-v2	56%	14975	7B	4096	32768	69.81	65.00	87.19

Rank (Bor	Model	Zero-shot	Memory U	Number of P	Embedding D	Max Tokens	Mean (T	Mean (TaskT	Classificat:	
1	<u>QZhou-Embedding</u>	53%	29070	7B	3584	8192	75.97	69.52	88.97	
2	LGAI-Embedding-Preview	56%	27125	7B	4096	32768	74.12	68.40	89.97	
3	Seed1.5-Embedding	56%	Unknown	Unknown	2048	32768	74.76	68.56	89.88	
4	<u>Qwen3-Embedding-8B</u>	95%	28866	7B	4096	32768	75.22	68.71	90.43	
5	Seed1.6-embedding	53%	Unknown	Unknown	2048	32768	74.07	67.98	92.42	
6	<u>Qwen3-Embedding-4B</u>	95%	15341	4B	2560	32768	74.60	68.10	89.84	
7	<u>gemini-embedding-001</u>	95%	Unknown	Unknown	3072	2048	73.30	67.67	90.05	
8	<u>jasper en vision language v</u> <u>1</u>	56%	3802	1B	8960	131072	71.41	66.65	90.27	
9	<u>Linq-Embed-Mistral</u>			•	<i>u</i> +	Table	(+ 1 1-		-	
10	SFR-Embedding-Mistral	Instruction-tuned retrievers				$q_{ m inst}^+ = { m Instruct}: \{{ m task_definition}\}$ Query: q^+				
11	NV-Embed-v2	56%	14975	7B	4096	32768	69.81	65.00	87.19	

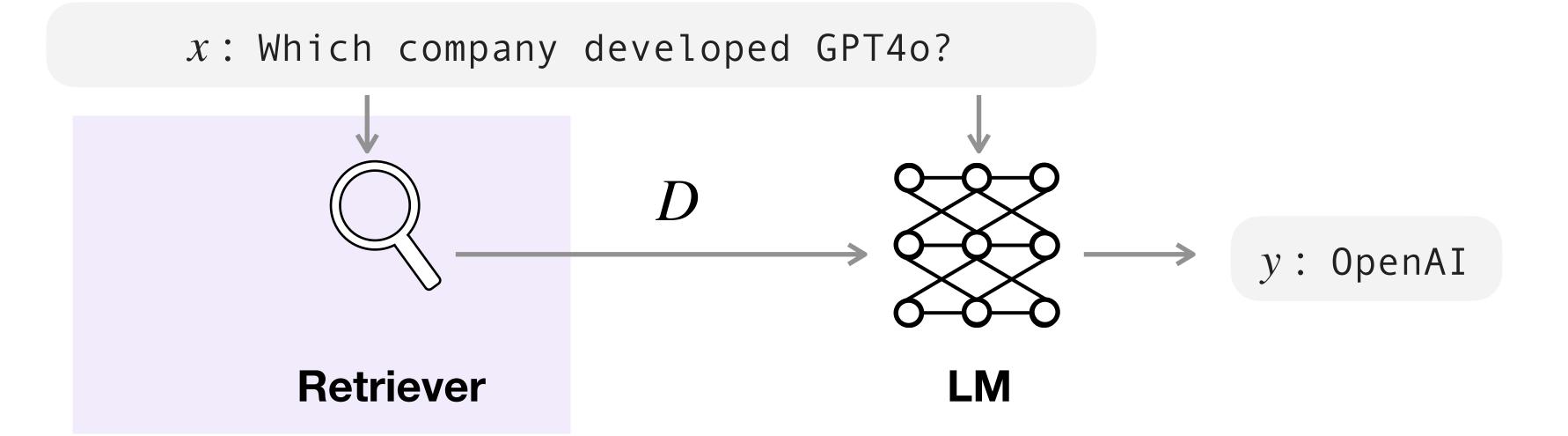
https://huggingface.co/spaces/mteb/leaderboard

Rank (Bor	Model	Zero-shot	Memory U	Number of P	Embedding D	Max Tokens	Mean (T	Mean (TaskT	Classificat
1	<u>QZhou-Embedding</u>	53%	29070	7B	3584	8192	75.97	69.52	88.97
2	LGAI-Embedding-Preview	56%	27125	7B	4096	32768	74.12	68.40	89.97
3	Seed1.5-Embedding	56%	Unknown	Unknown	2048	32768	74.76	68.56	89.88
4	<u>Qwen3-Embedding-8B</u>	95%	28866	7B	4096	32768	75.22	68.71	90.43
5	Seed1.6-embedding	53%	Unknown	Unknown	2048	32768	74.07	67.98	92.42
6	<u>Qwen3-Embedding-4B</u>	95%	15341	4B	2560	32768	74.60	68.10	89.84
7	<u>gemini-embedding-001</u>	95%	Unknown	Unknown	3072	2048	73.30	67.67	90.05
8	<u>jasper en vision language v</u> <u>1</u>	56%	3802	1B	8960	131072	71.41	66.65	90.27
9	<u>Linq-Embed-Mistral</u>	95%	13563	7B	4096	32768	69.80	65.29	83.00
10	SFR-Embedding-Mistral	85%	13563	7B	4096	32768	69.31	64.94	80.47
11	NV-Embed-v2	56%	14975	7B	4096	32768	69.81	65.00	87.19



https://huggingface.co/spaces/mteb/leaderboard

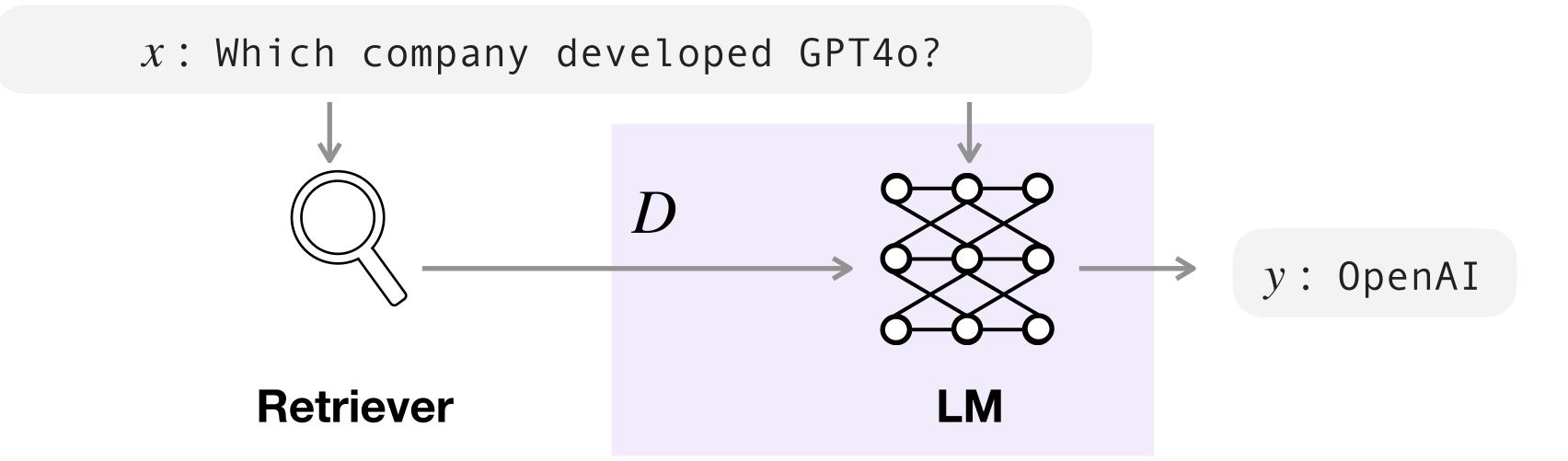
Summary of Part 2



- Types of retrievers
- Training
- Evaluations

- Different types of retrievers
- Training with contrastive loss
- Common metrics: NDCG@10, Recall ... etc
- Performance v.s. cost trade off

Today's Outline



Common architectures

Recent progress

What to retrieve?

What to retrieve?

Text chunks (passages)?

What to retrieve?

Text chunks (passages)?
Tokens?

What to retrieve?

Text chunks (passages)?

Tokens?

Something else?

What to retrieve?

Text chunks (passages)?

Tokens?

Something else?

What to retrieve?

When to retrieve?

Text chunks (passages)?

Tokens?

Something else?

What to retrieve?

When to retrieve?

w/ retrieval

The capital city of Ontario is Toronto.

Text chunks (passages)?

Tokens?

Something else?

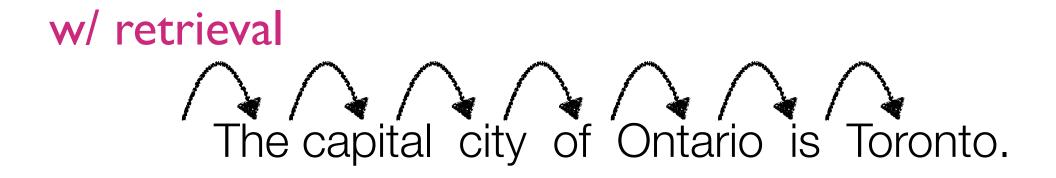
What to retrieve?

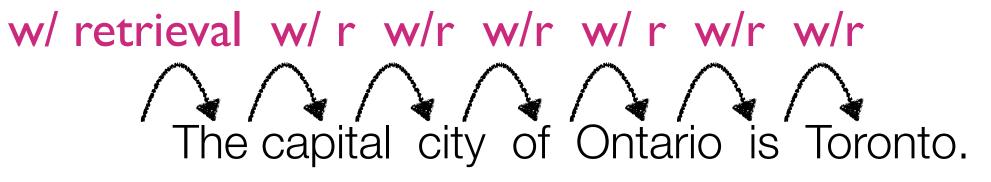
When to retrieve?

Text chunks (passages)?

Tokens?

Something else?





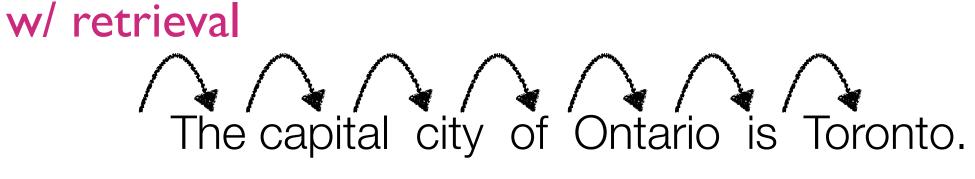
What to retrieve?

When to retrieve?

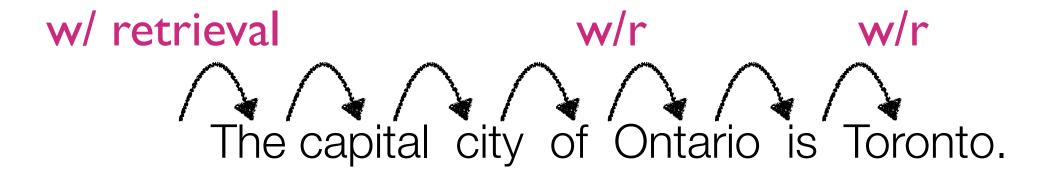
Text chunks (passages)?

Tokens?

Something else?







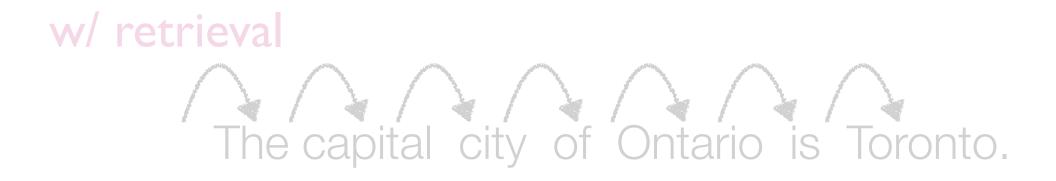
What to retrieve?

When to retrieve?

Text chunks (passages)?

Tokens?

Something else?



What to retrieve?

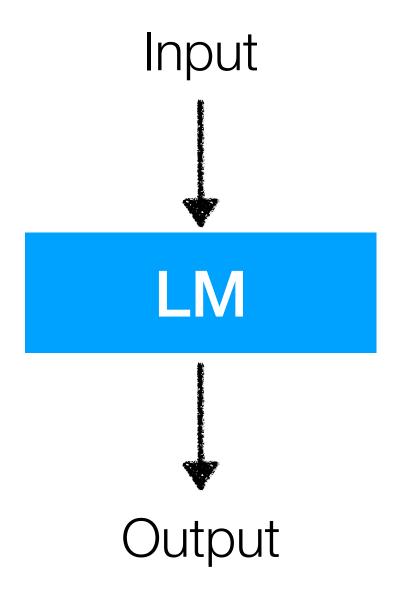
When to retrieve?

How to use retrieval?

Text chunks (passages)?

Tokens?

Something else?



What to retrieve?

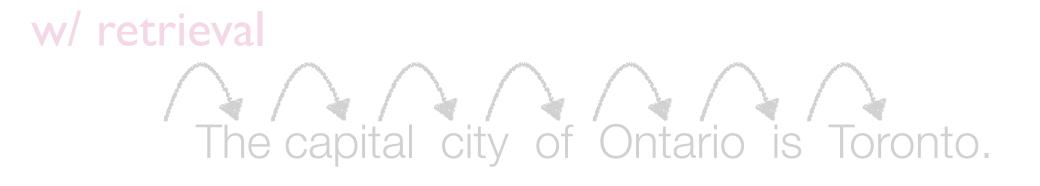
Query

Text chunks (passages)?

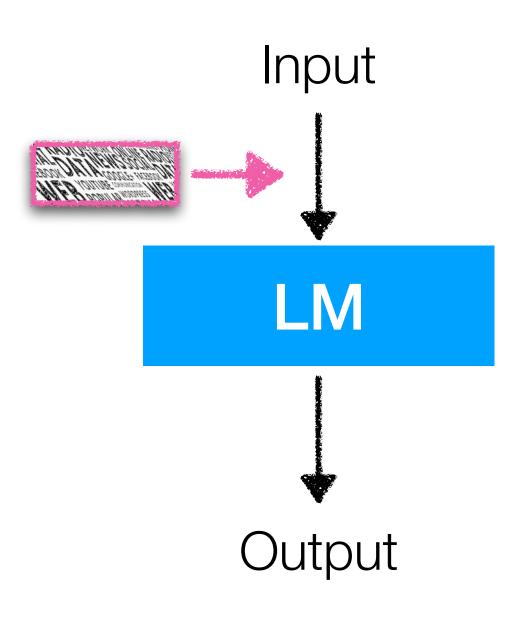
Tokens?

Something else?

When to retrieve?



How to use retrieval?



What to retrieve?

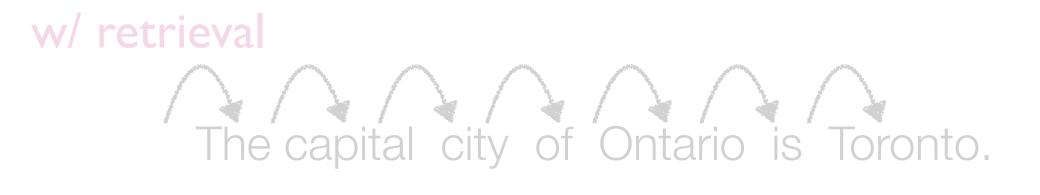
Query

Text chunks (passages)?

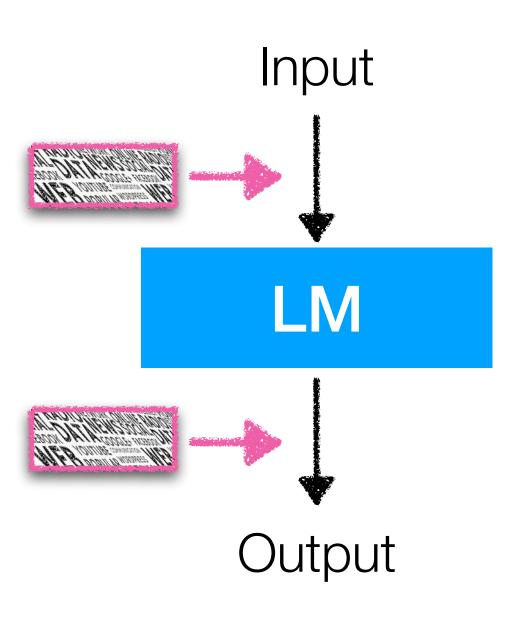
Tokens?

Something else?

When to retrieve?



How to use retrieval?



What to retrieve?

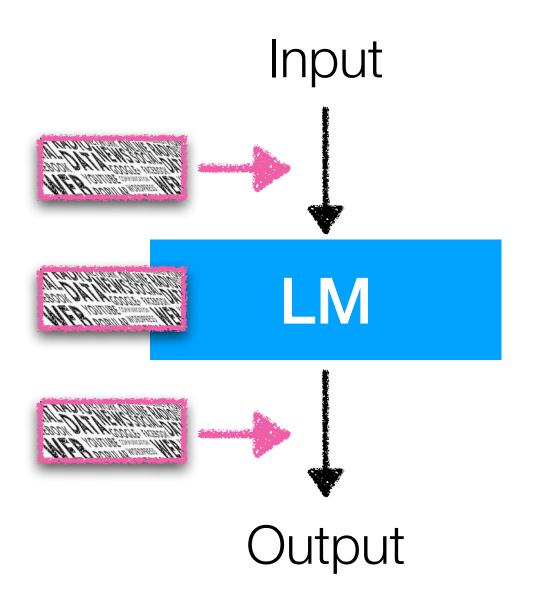
When to retrieve?

How to use retrieval?

Text chunks (passages)?

Tokens?

Something else?

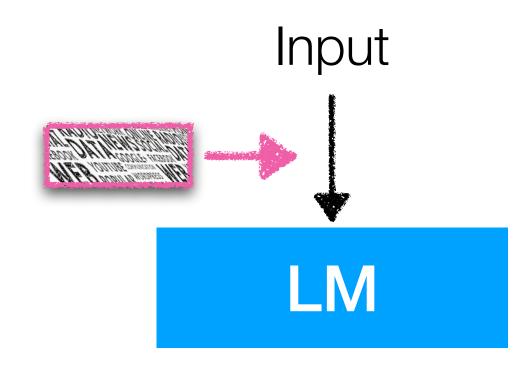


Part 3: LMs and Pipeline

47

How to Use Retrieval

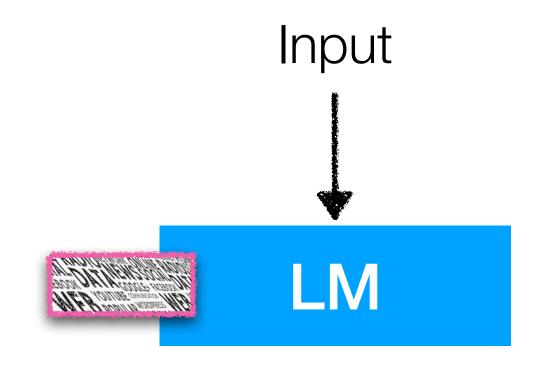
Input Augmentation



- Augment input of LMs
- Easy to apply (w/o training)
 & effective
- Difficulty of using many D

e.g., RAG

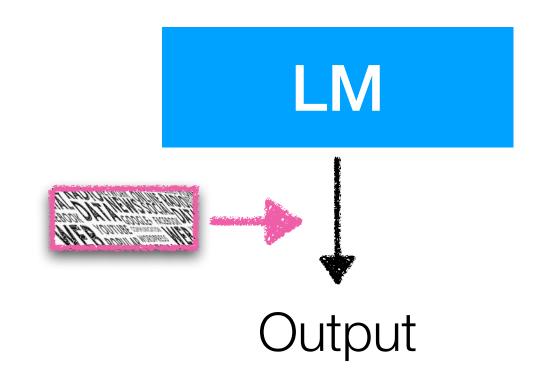
Intermediate Fusion



- Modify LMs to incorporate D in intermediate layers
- Scalable to many passages
- Requires retraining

e.g., RETRO, InstructRETRO

Output Interpolation

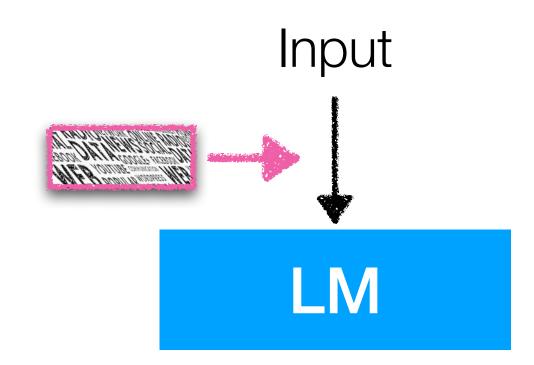


- Directly manipulate output token distributions
- No training required*
- Limited effectiveness on tasks

e.g., kNNLM

How to Use Retrieval

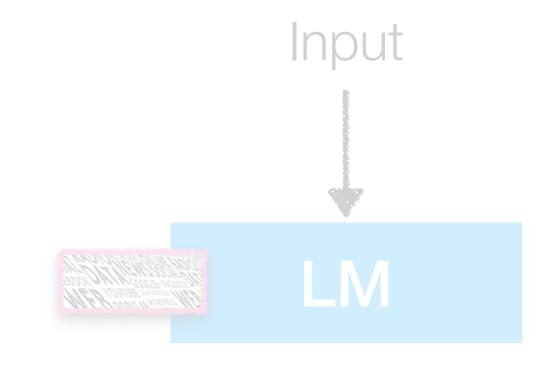
Input Augmentation



- Augment input of LMs
- Easy to apply (w/o training)& effective
- Difficulty of using many D

e.g., RAG

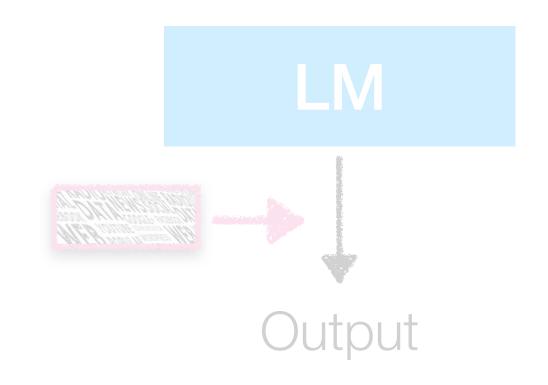
Intermediate Fusion



- Modify LMs to incorporate D in intermediate layers
- Scalable to many passages
- Requires retraining

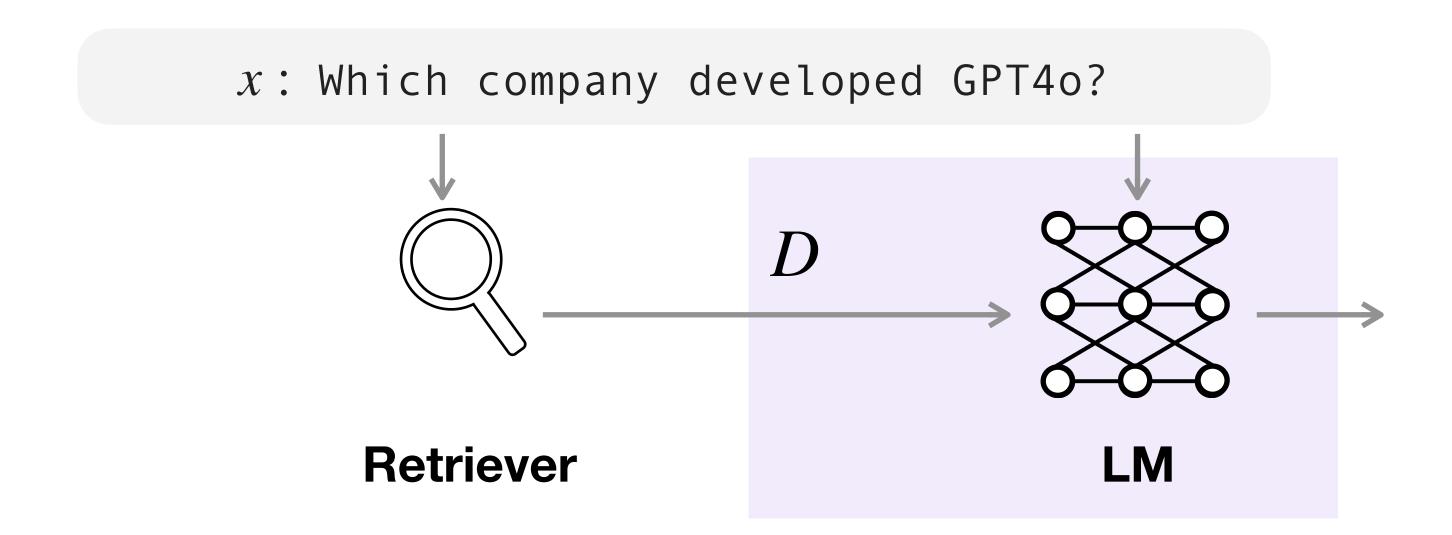
e.g., RETRO, InstructRETRO

Output Interpolation



- Directly manipulate output token distributions
- No training required*
- Limited effectiveness on tasks

e.g., kNNLM



$$D \in \mathrm{Top}_k \mathrm{Sim}(\cdot \mid x)$$

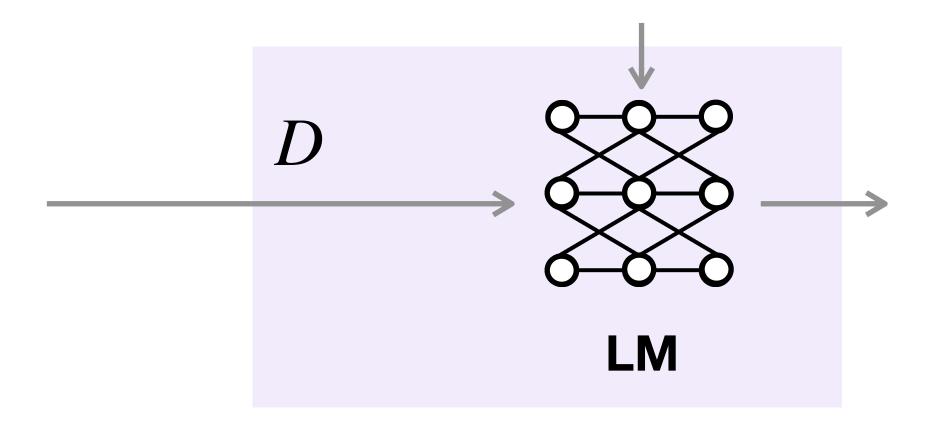
GPT-40 is a pre-trained transformer developed by OpenAI.

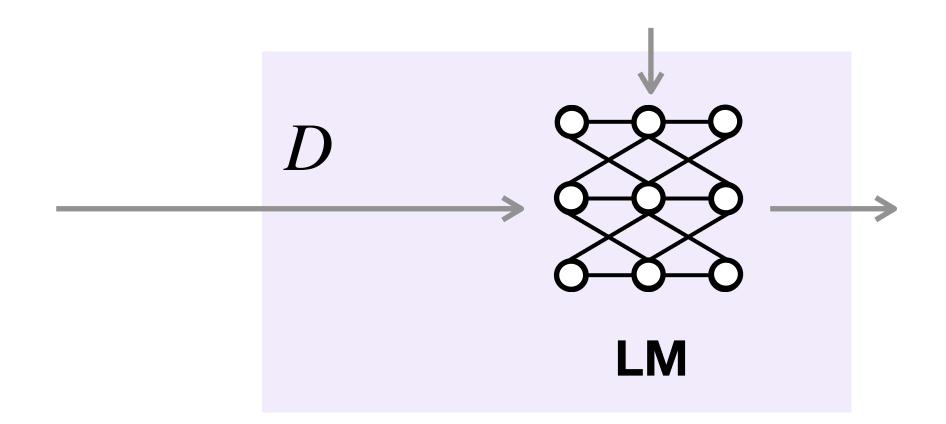
0.9

Transformers is a series of science fiction action films based on the Transformers franchise.

GPT40 was released by OpenAI in May 2024.

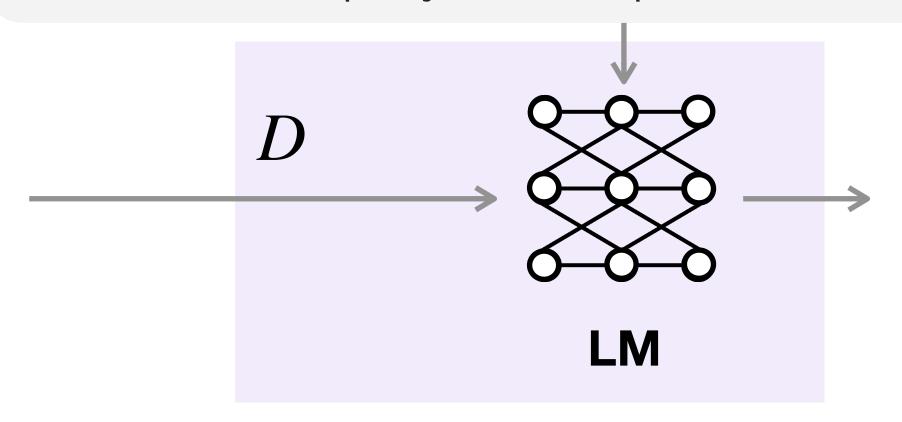
0.8





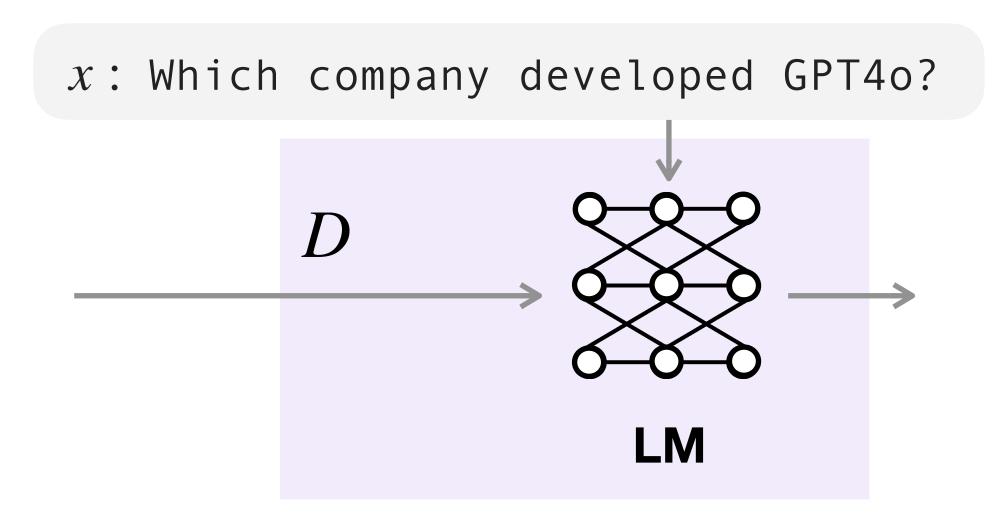
 $x: \mbox{Which company developed GPT4o?} \hfill D \hfill \hfill$

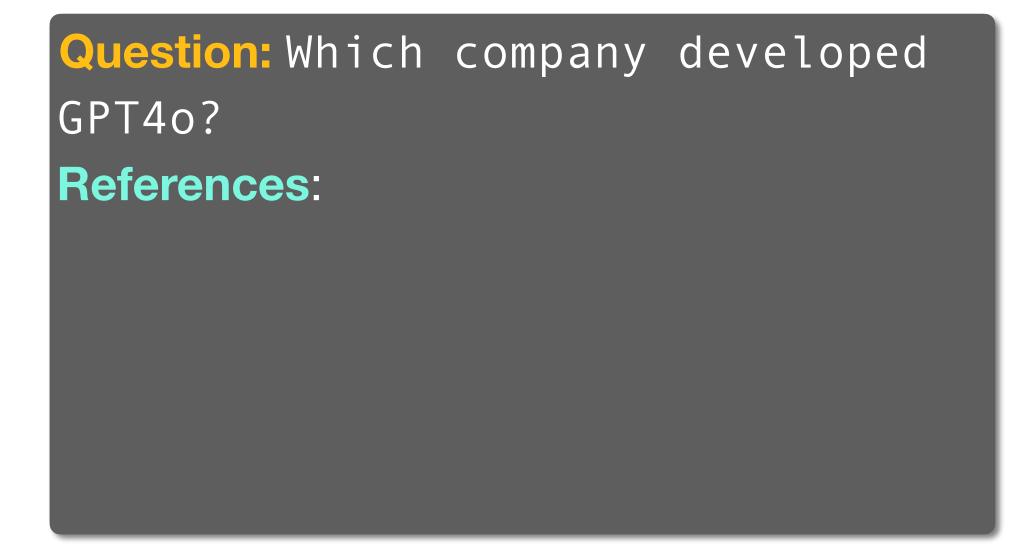
x: Which company developed GPT4o?



GPT-40 is a pre-trained transformer developed by OpenAI.

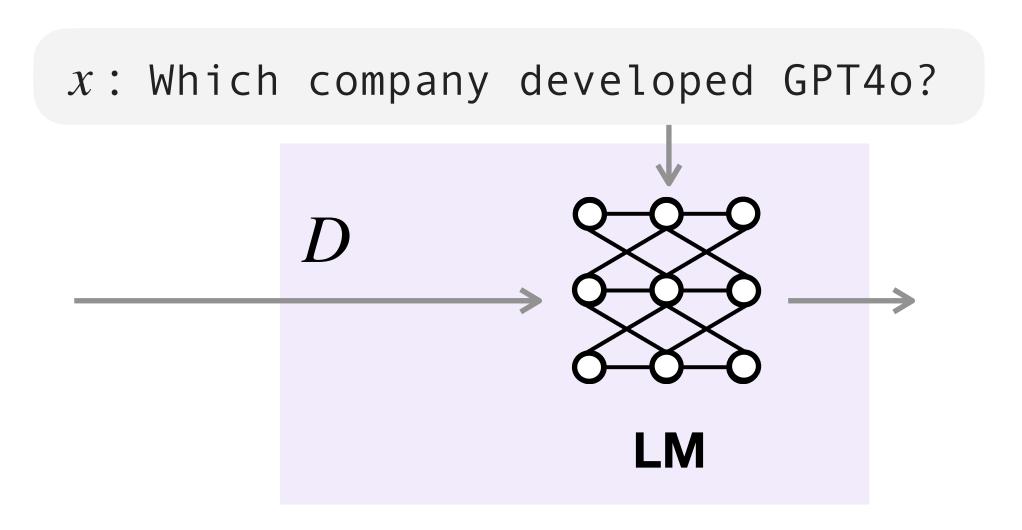
GPT4o was released by OpenAI in May 2024.

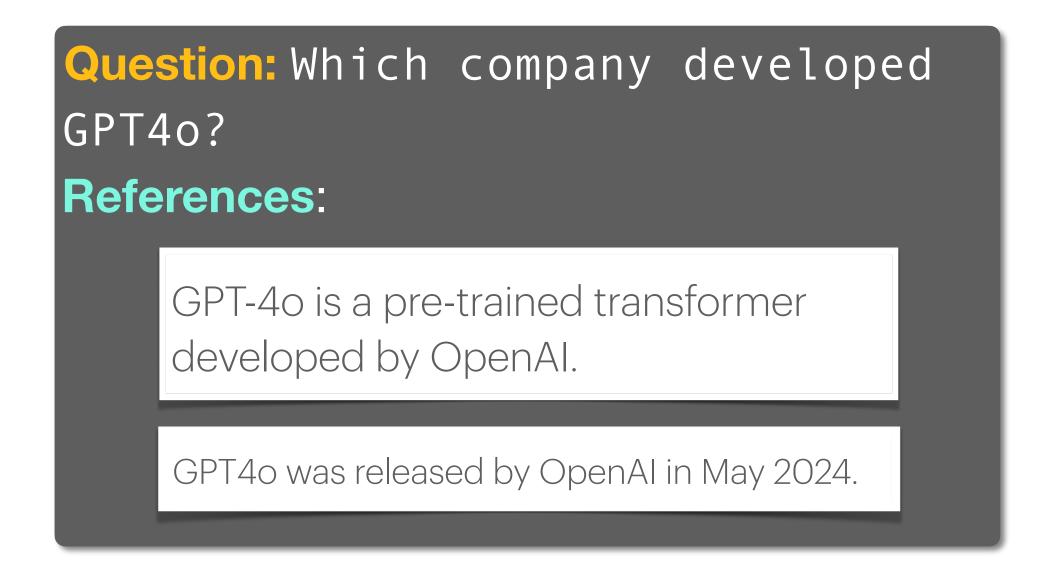


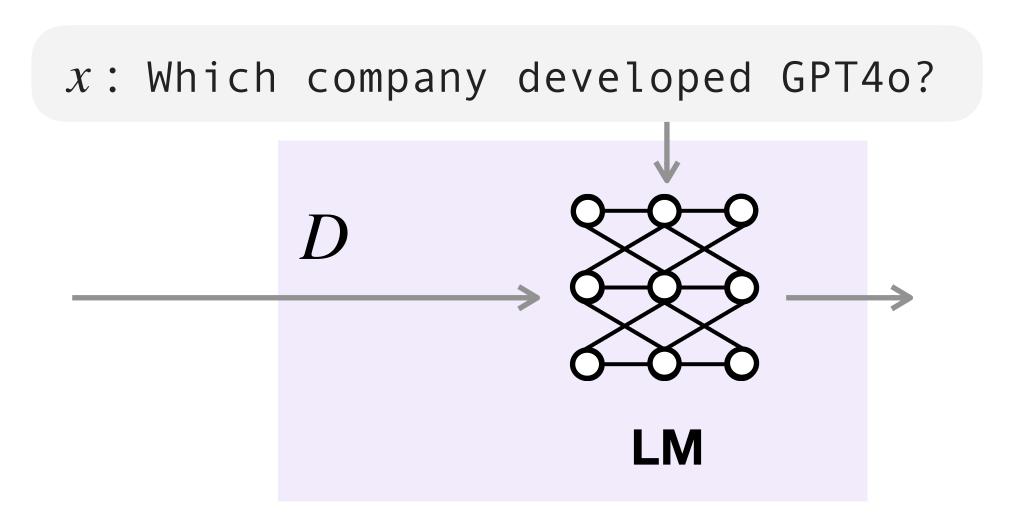


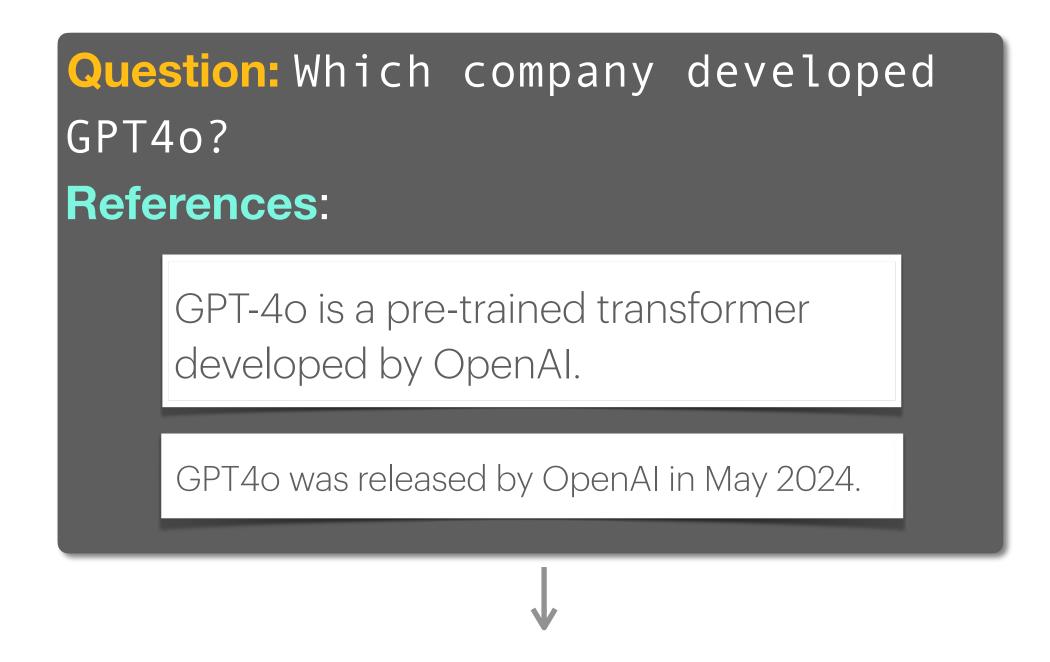
GPT-40 is a pre-trained transformer developed by OpenAI.

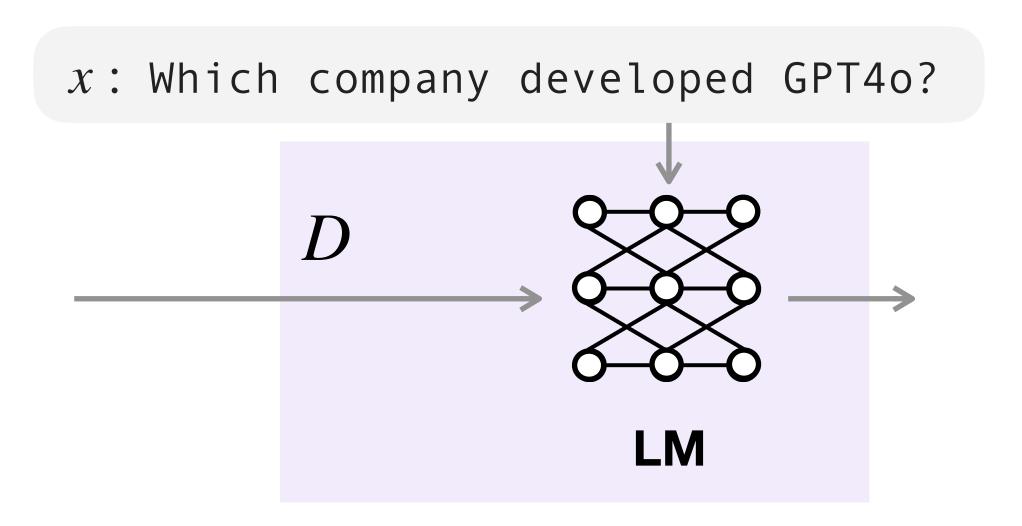
GPT40 was released by OpenAI in May 2024.

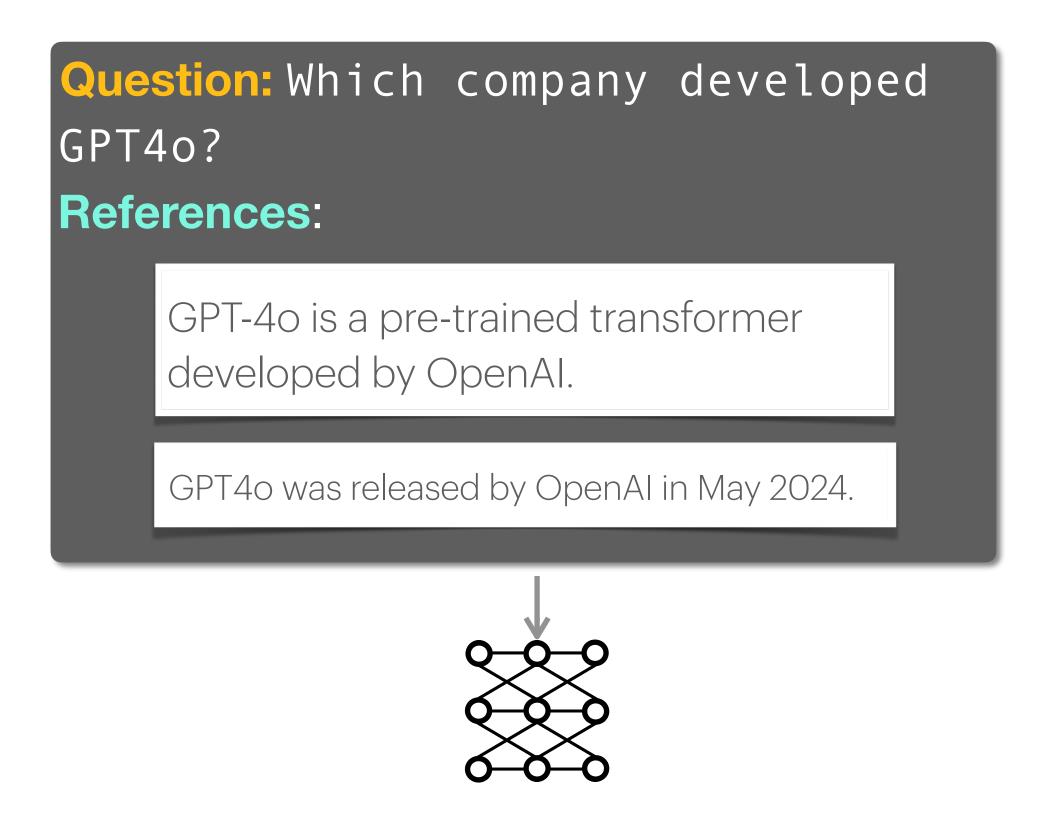


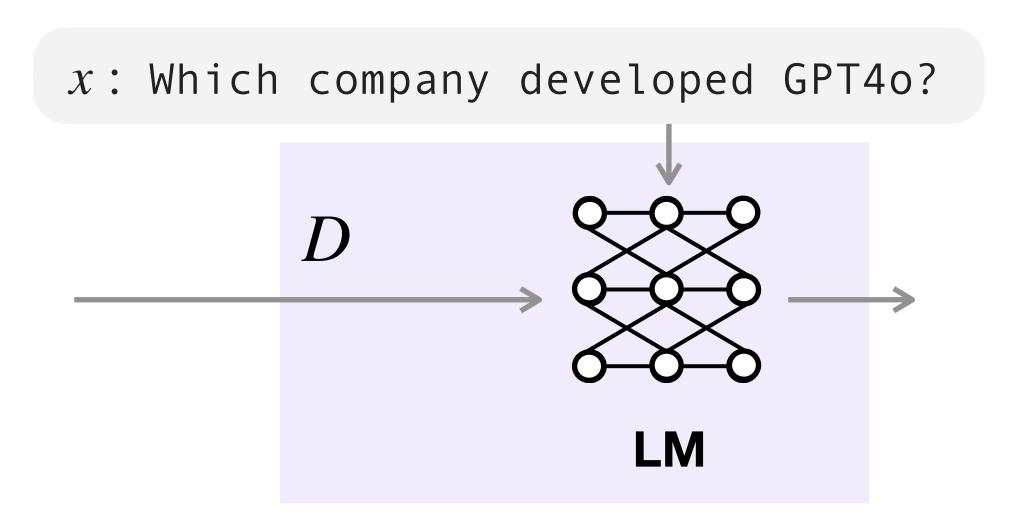




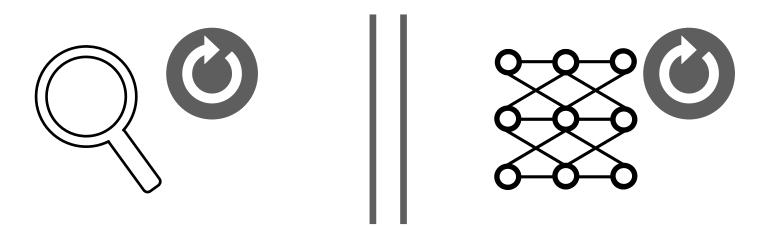






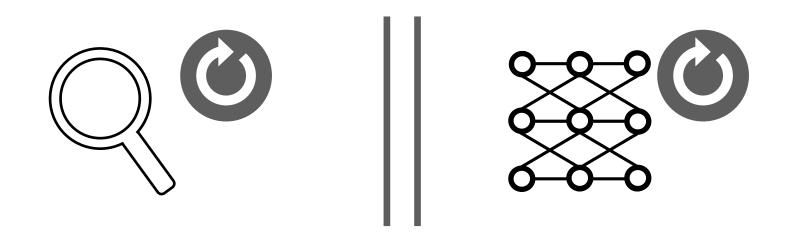


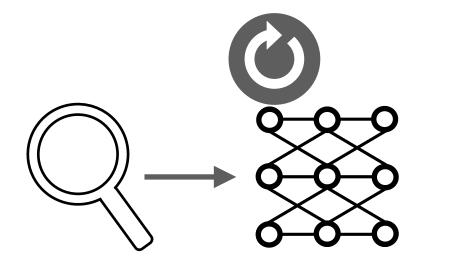


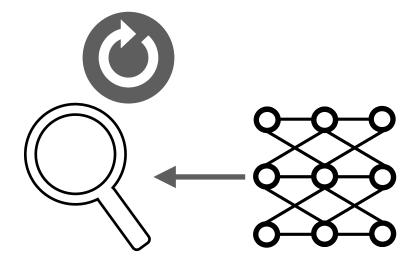


Independent training

- DPR (Karpukhin et al., 2020)
- DRQA (Chen et al., 2017)





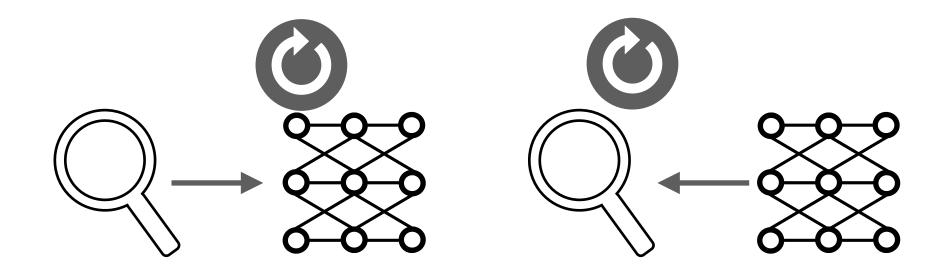


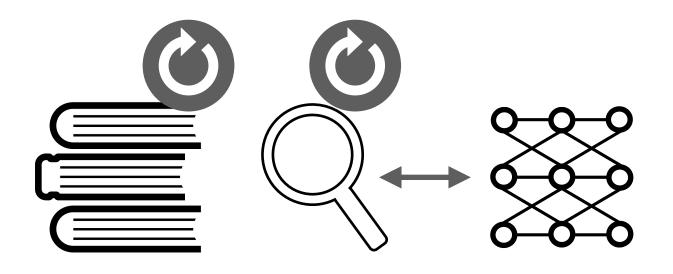
Independent training

- DPR (Karpukhin et al., 2020)
- DRQA (Chen et al., 2017)

Sequential training

- Evidentiality Generator (Asai et al., 2023)
- REPLUG (Shi et al., 2023)





Independent training

- DPR (Karpukhin et al., 2020)
- DRQA (Chen et al., 2017)

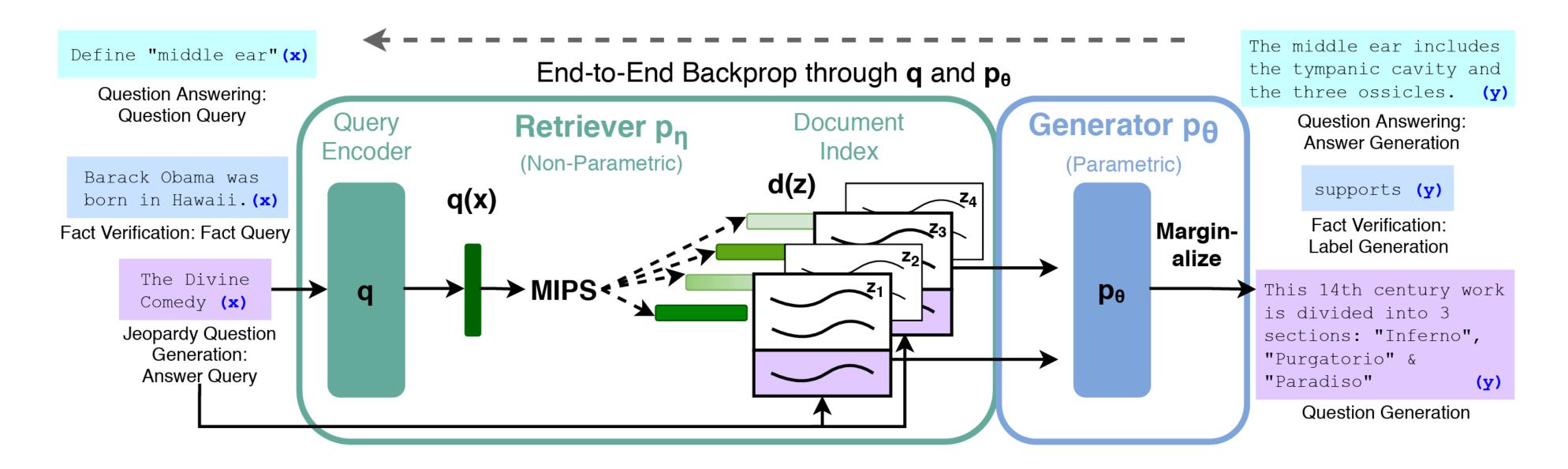
Sequential training

- Evidentiality Generator (Asai et al., 2023)
- REPLUG (Shi et al., 2023)

Joint training

- RAG (Lewis et al., 2021)
- REALM (Guu et al., 2021)

End-to-end training for RAG



$$\sum_{i} -\log p_{RAG}(y_{i}|x_{j})$$

Minimize NLL as in normal generation training

Retriever score Generator score

$$p_{\text{RAG}} \approx \prod_{i} \sum_{z \in \text{top-k}(p(|x))} p_{\eta}(z|x) p_{\theta}(y_i|x, z, y_{1:i-1})$$

Update retriever encoder and generator

- DPR (Karpukhin et al., 2020)
- DRQA (Chen et al., 2017)

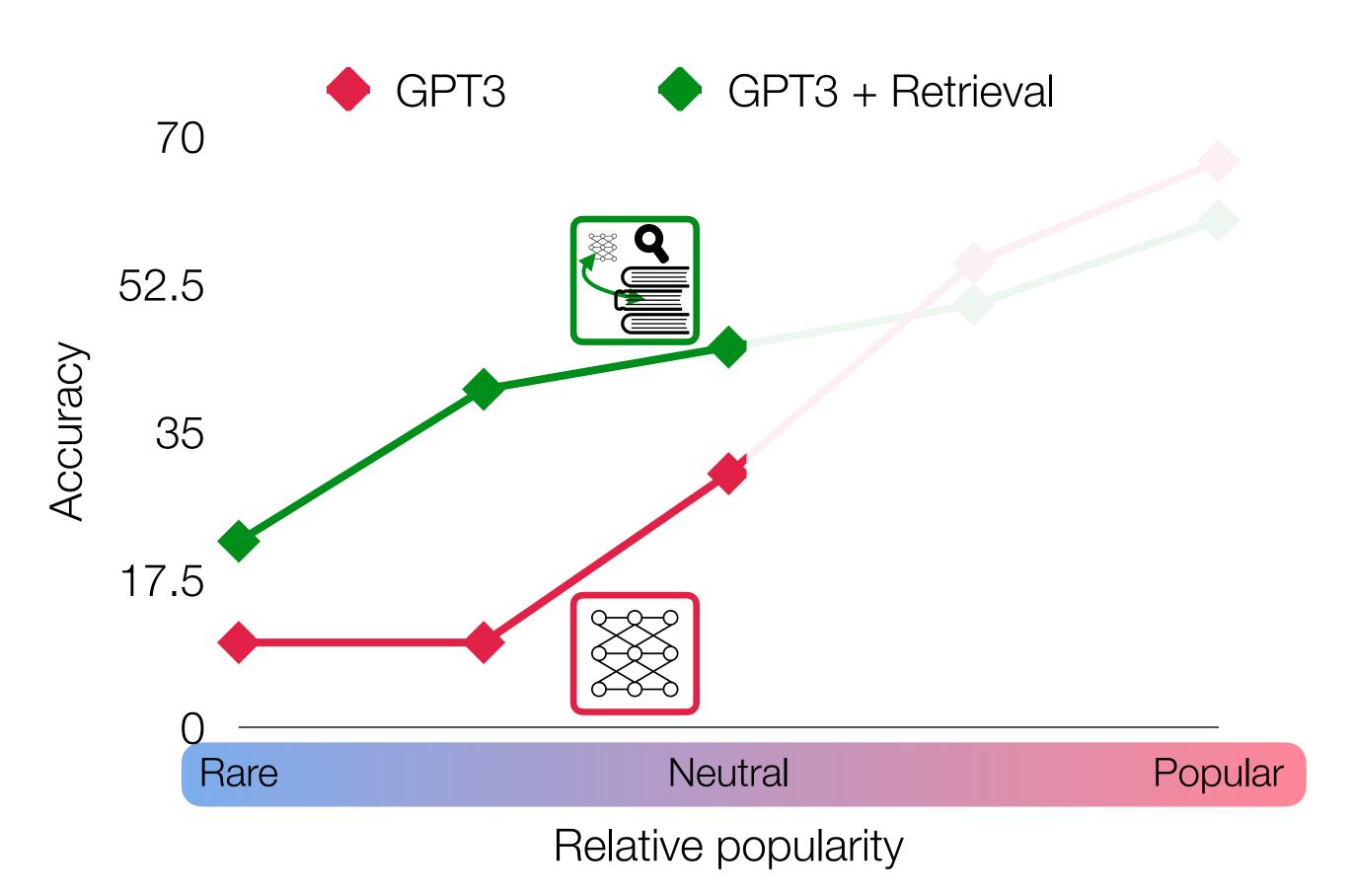
Now people often combine retrieval with off-the-shelf LMs

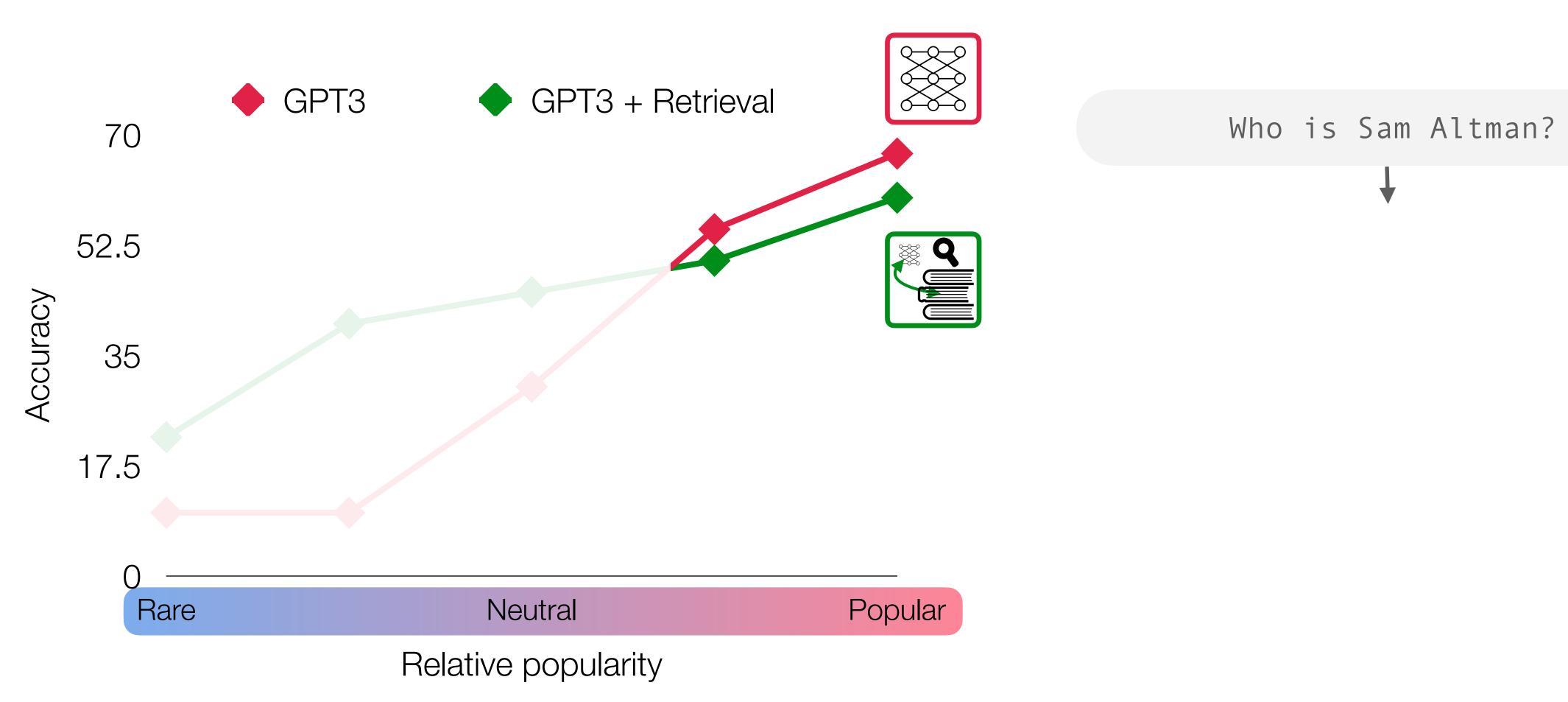
REPLUG (Shi et al., 2023) Widely referred to as **RAG**

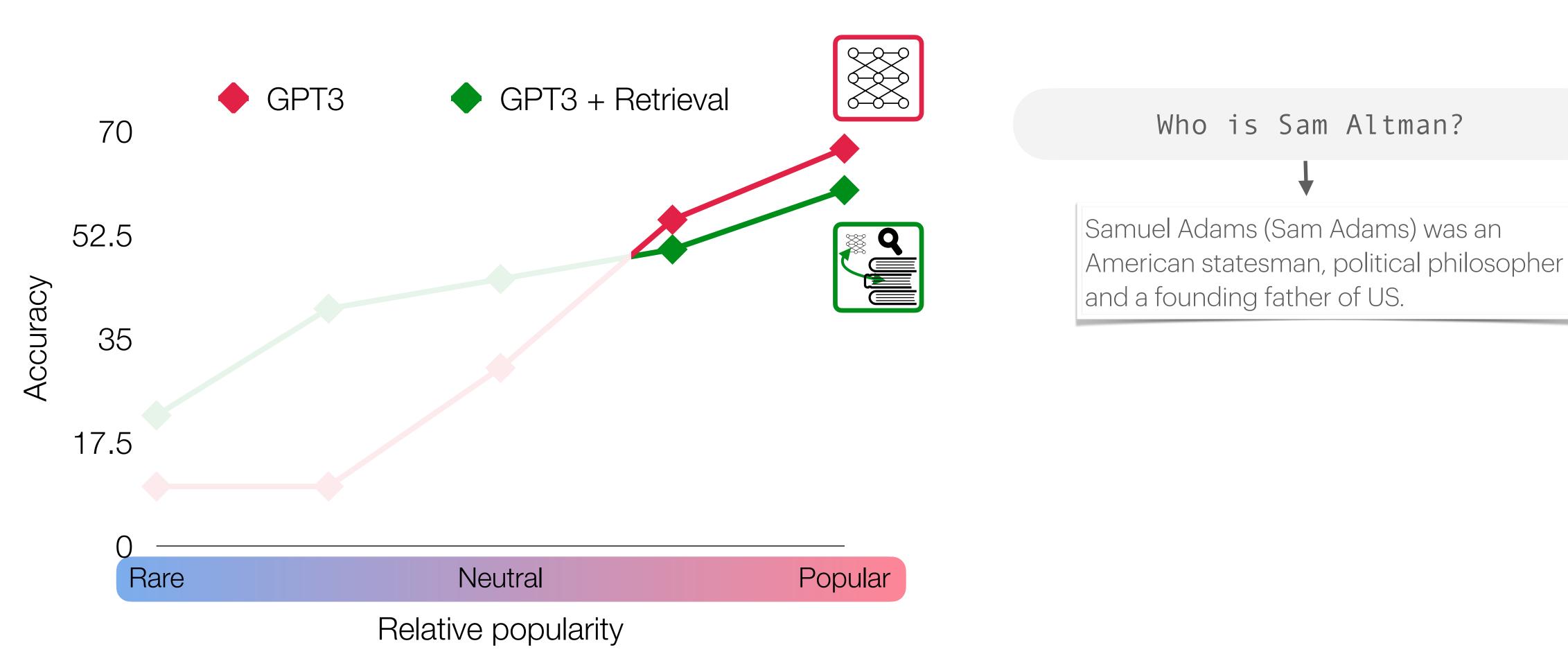
- RAG (Lewis et al., 2021)
- REALM (Guu et al., 2021)

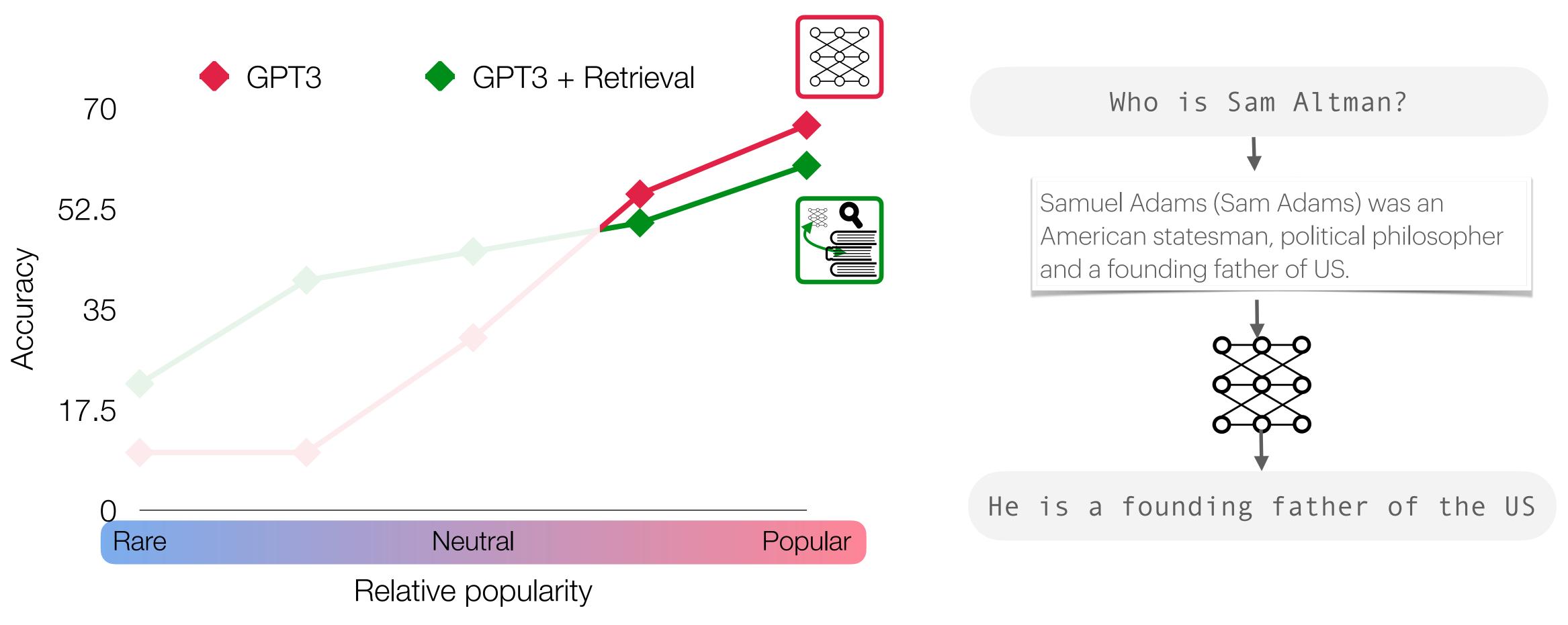
Effectiveness of Simple RAG

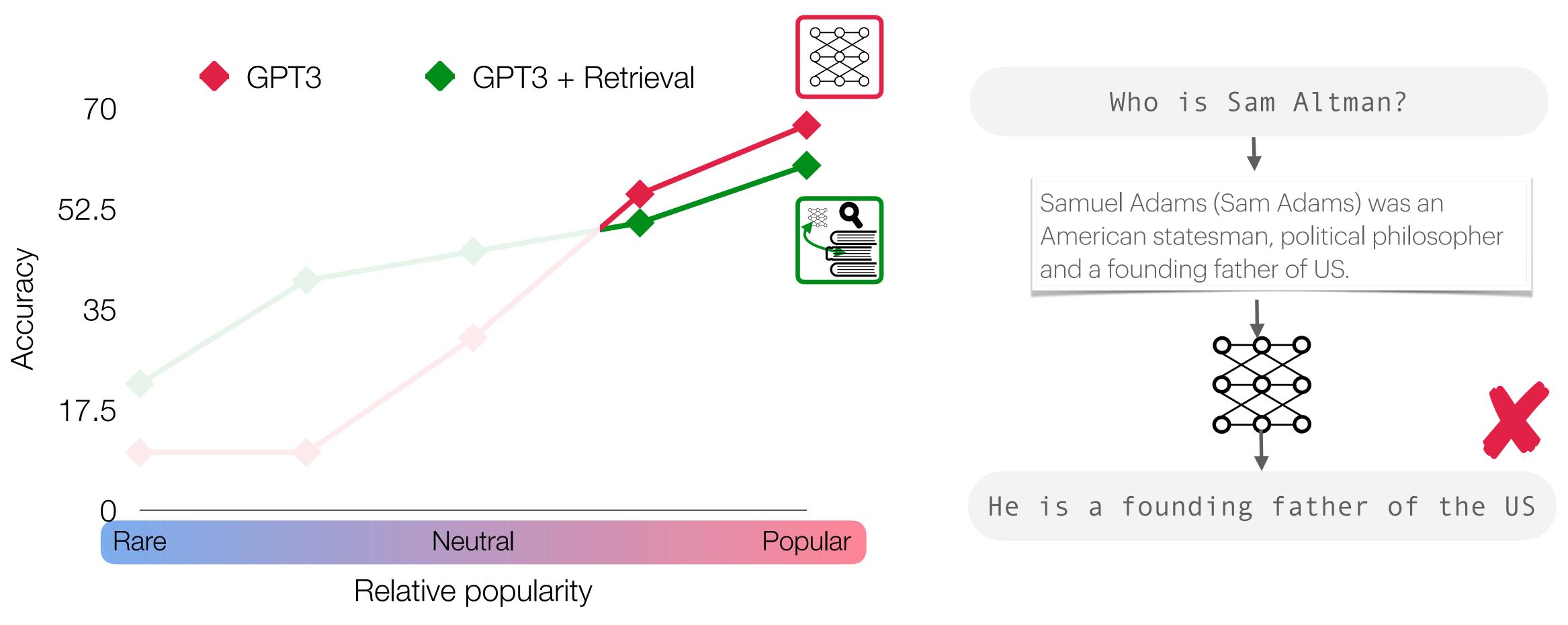
RAG constantly gives performance improvements esp. in long-tail

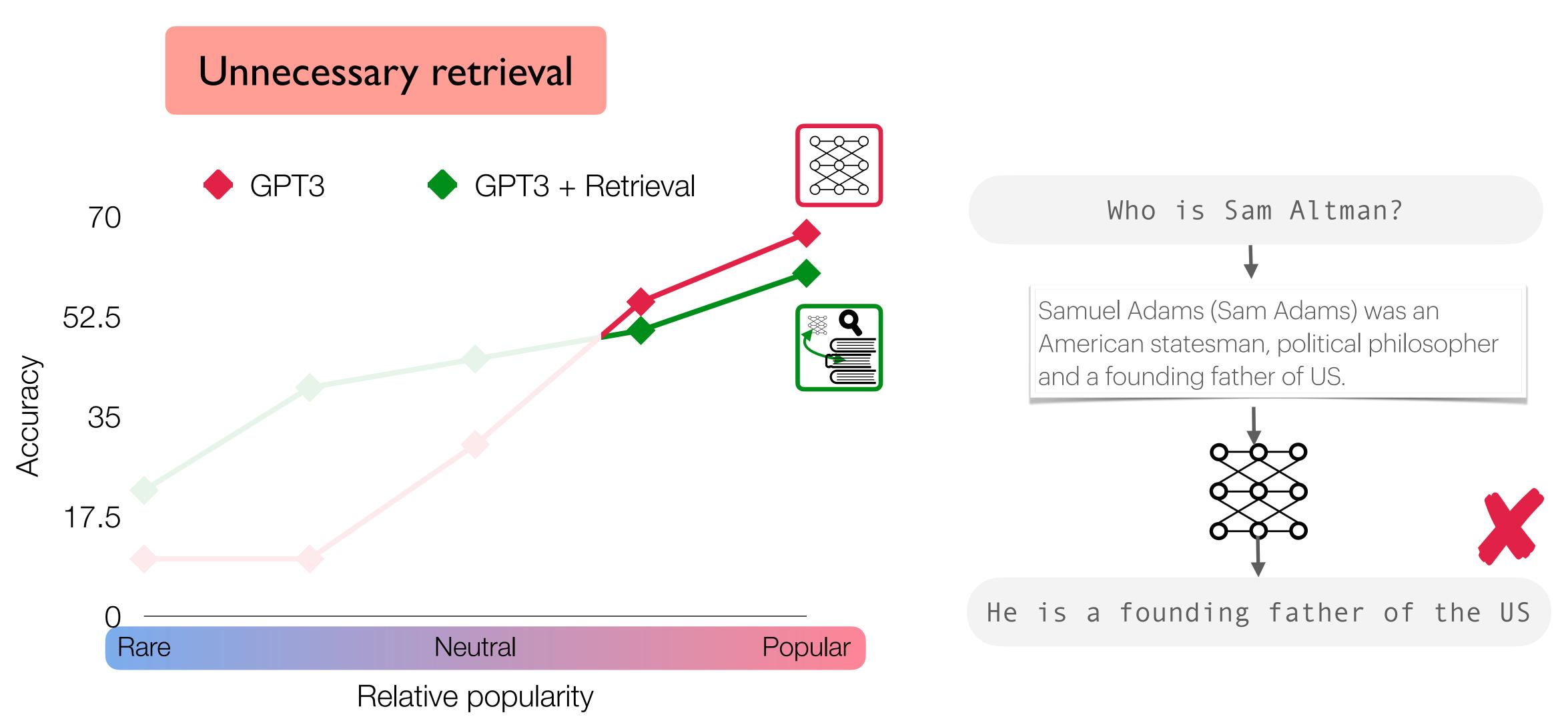


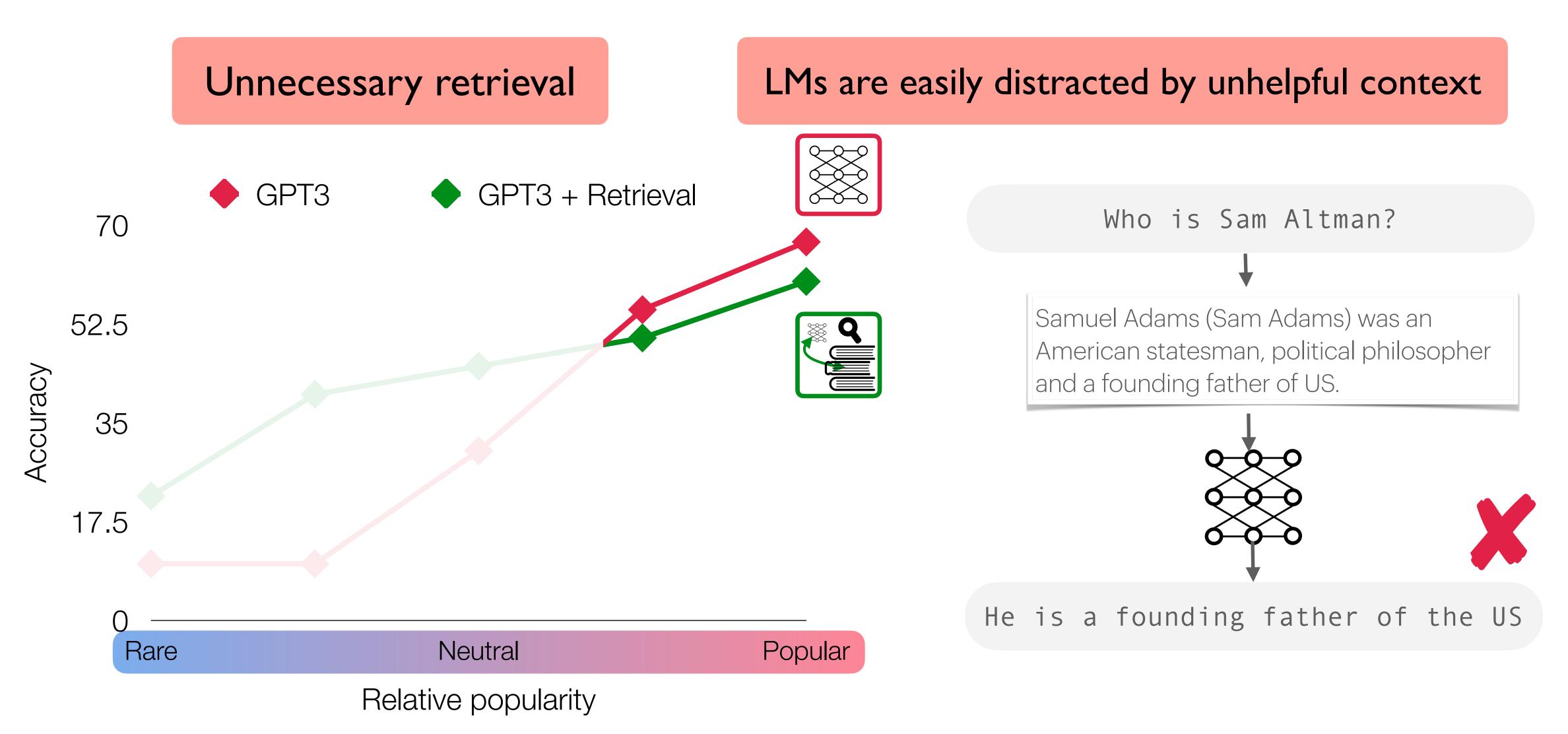












What are the latest discoveries from the James Webb Space Telescope?

The James Webb Space Telescope is designed to peer into the dusty clouds of gas where stars and planetary systems are born. Webb has captured the first direct image of an exoplanet, and the Pillars of Creation in the Eagle Nebula[1][2]. Additionally, the telescope will be used to study the next interstellar interloper[3].

(*Some generated statements may not be fully supported by citations, while others are fully supported.)

Cited Webpages

[1]: nasa.gov (xcitation does not support its associated statement) NASA's Webb Confirms Its First Exoplanet

... Researchers confirmed an exoplanet, a planet that orbits another star, using NASA's James Webb Space Telescope for the first time. ..

[2]: cnn.com (Acitation partially supports its associated statement)
Pillars of Creation: James Webb Space Telescope ...

... The Pillars of Creation, in the Eagle Nebula, is a star-forming region captured in a new image (right) by the James Webb Space Telescope that reveals more detail than a 2014 image (left) by Hubble ...

Outputs aren't often supported by citations

What are the latest discoveries from the James Webb Space Telescope?

The James Webb Space Telescope is designed to peer into the dusty clouds of gas where stars and planetary systems are born. Webb has captured the first direct image of an exoplanet, and the Pillars of Creation in the Eagle Nebula[1][2]. Additionally, the telescope will be used to study the next interstellar interloper[3].

(*Some generated statements may not be fully supported by citations, while others are fully supported.)

Cited Webpages

[1]: nasa.gov (xcitation does not support its associated statement) NASA's Webb Confirms Its First Exoplanet

... Researchers confirmed an exoplanet, a planet that orbits another star, using NASA's James Webb Space Telescope for the first time. ..

[2]: cnn.com (Acitation partially supports its associated statement)
Pillars of Creation: James Webb Space Telescope ...

... The Pillars of Creation, in the Eagle Nebula, is a star-forming region captured in a new image (right) by the James Webb Space Telescope that reveals more detail than a 2014 image (left) by Hubble ...

Outputs aren't often supported by citations

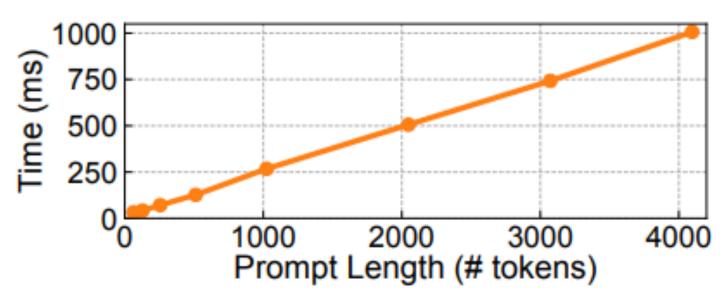
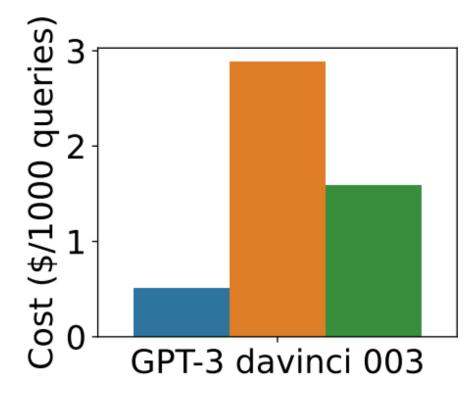


Figure 2. Inference time with different input lengths.

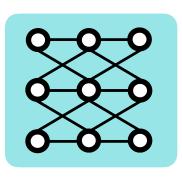
Vanilla RAG

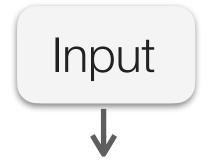


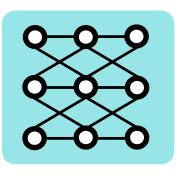
Increased latency to encode much longer context

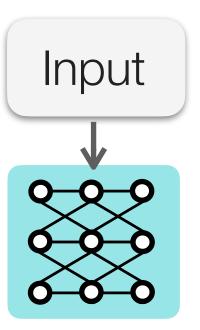
Liu et al. Findings of EMNLP 2023. Evaluating Verifiability in Generative Search Engines

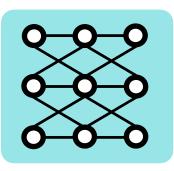
- LMs aren't trained with retrieval
- Fixed two-stage pipeline

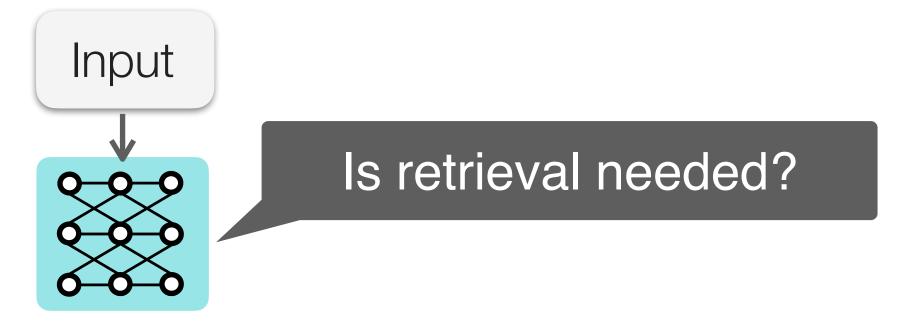


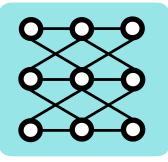


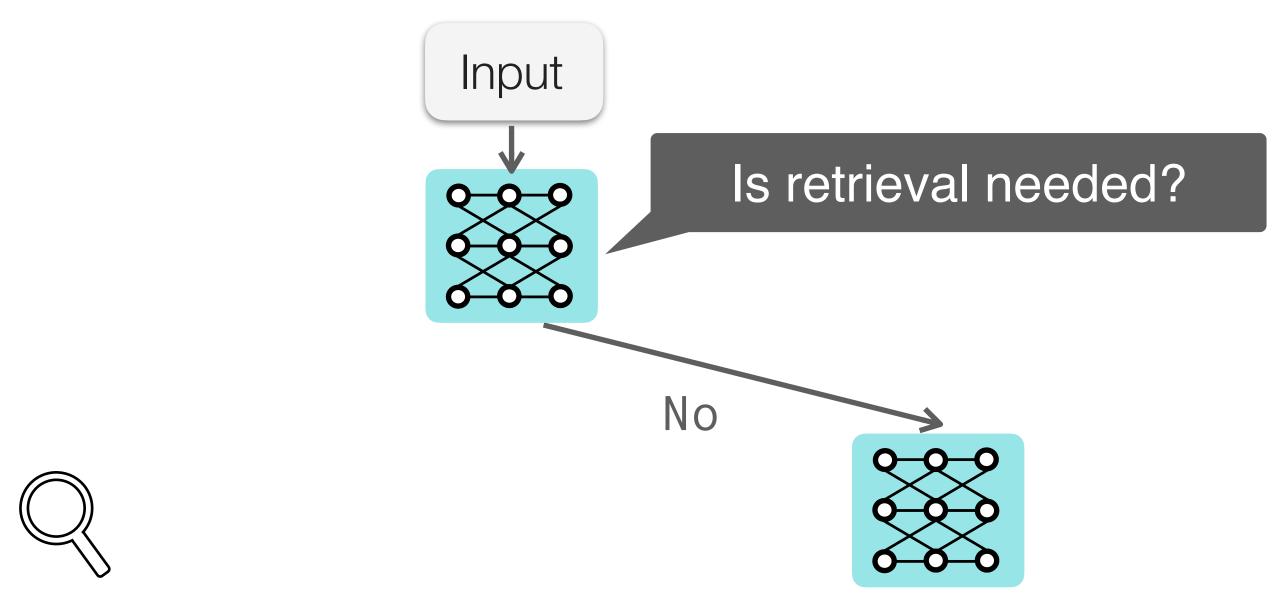


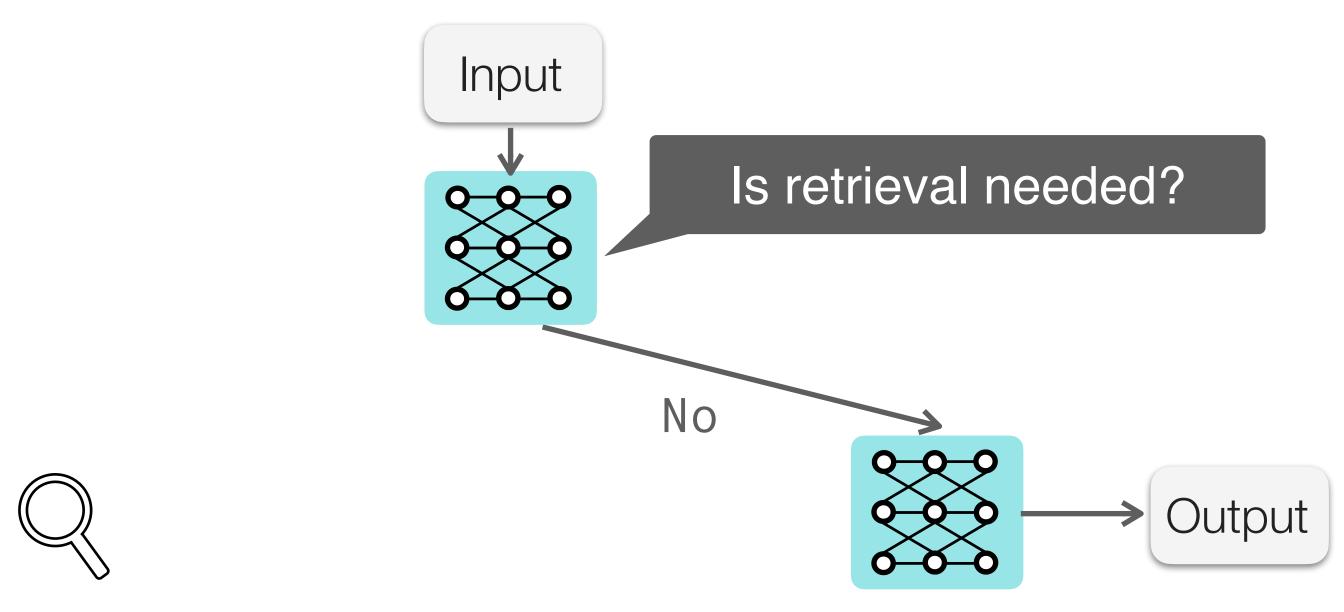


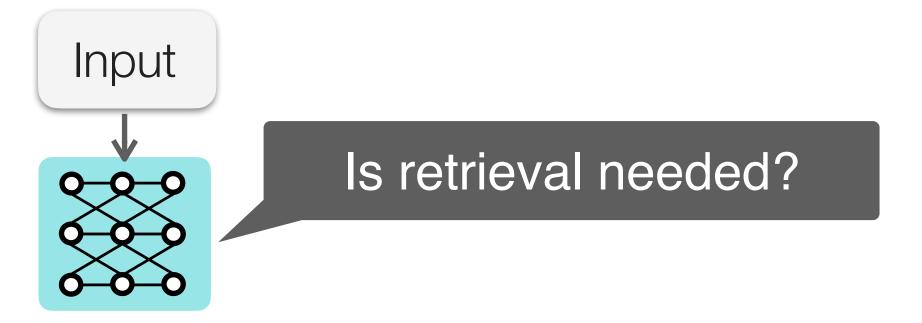


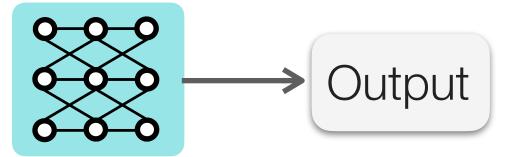


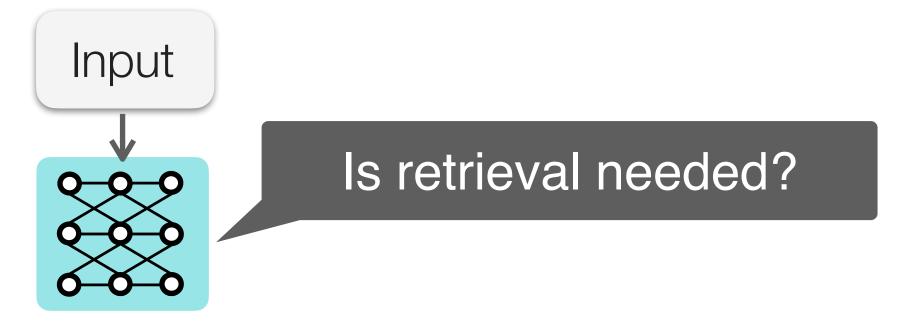


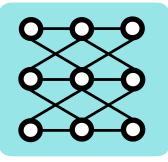


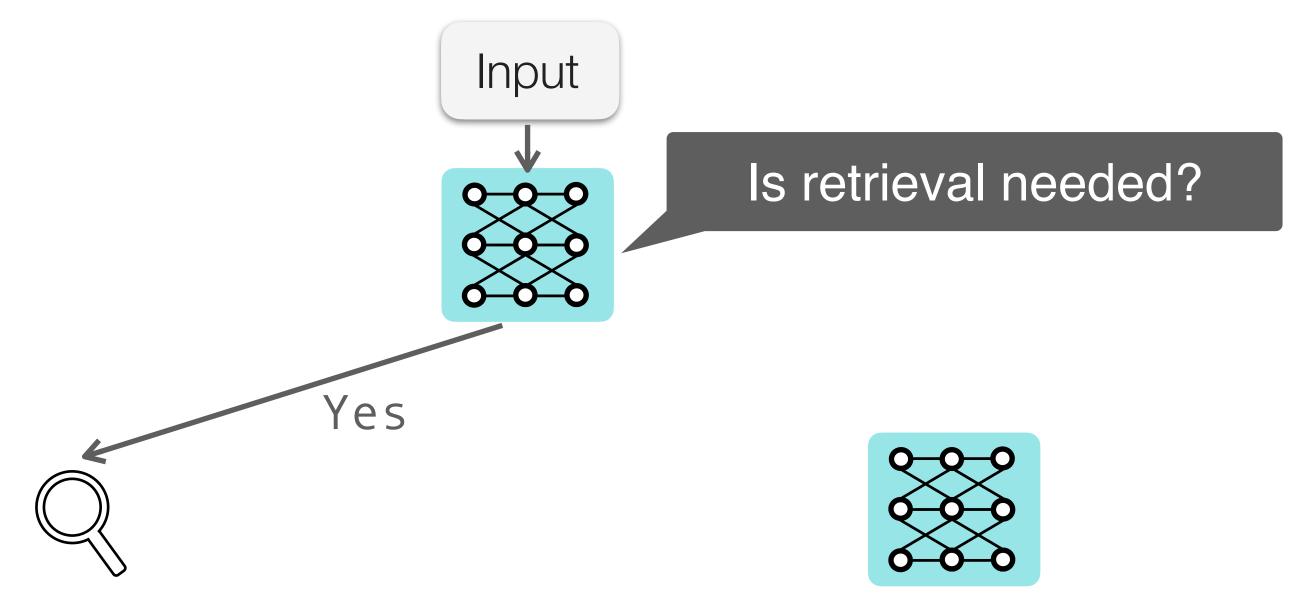


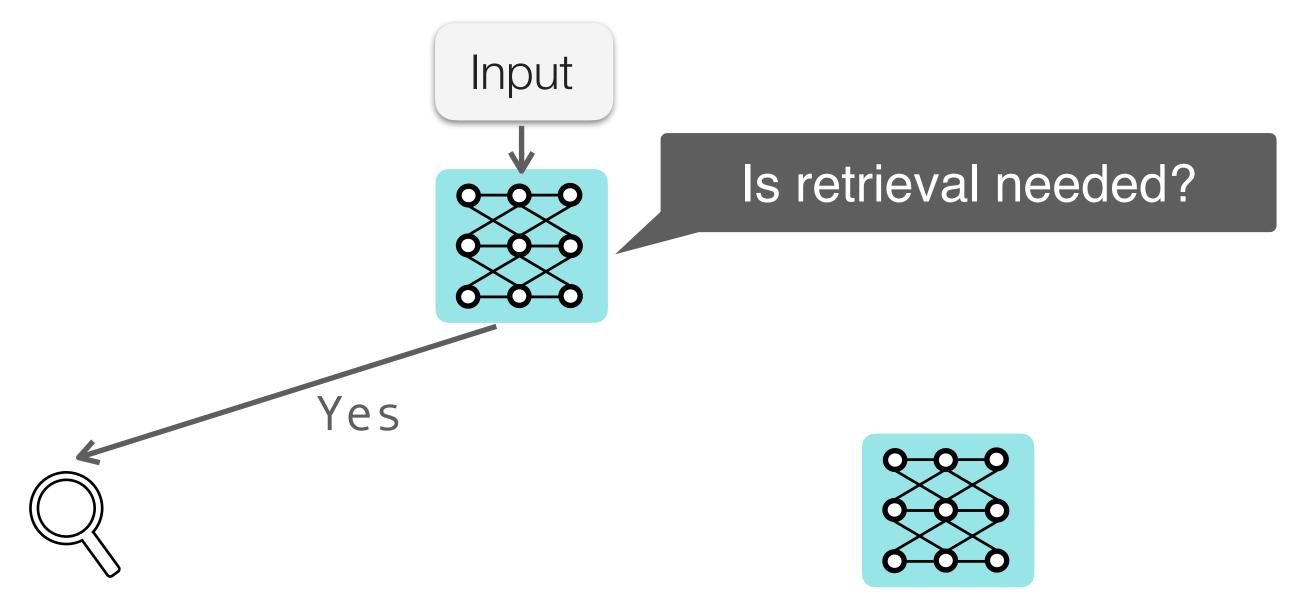




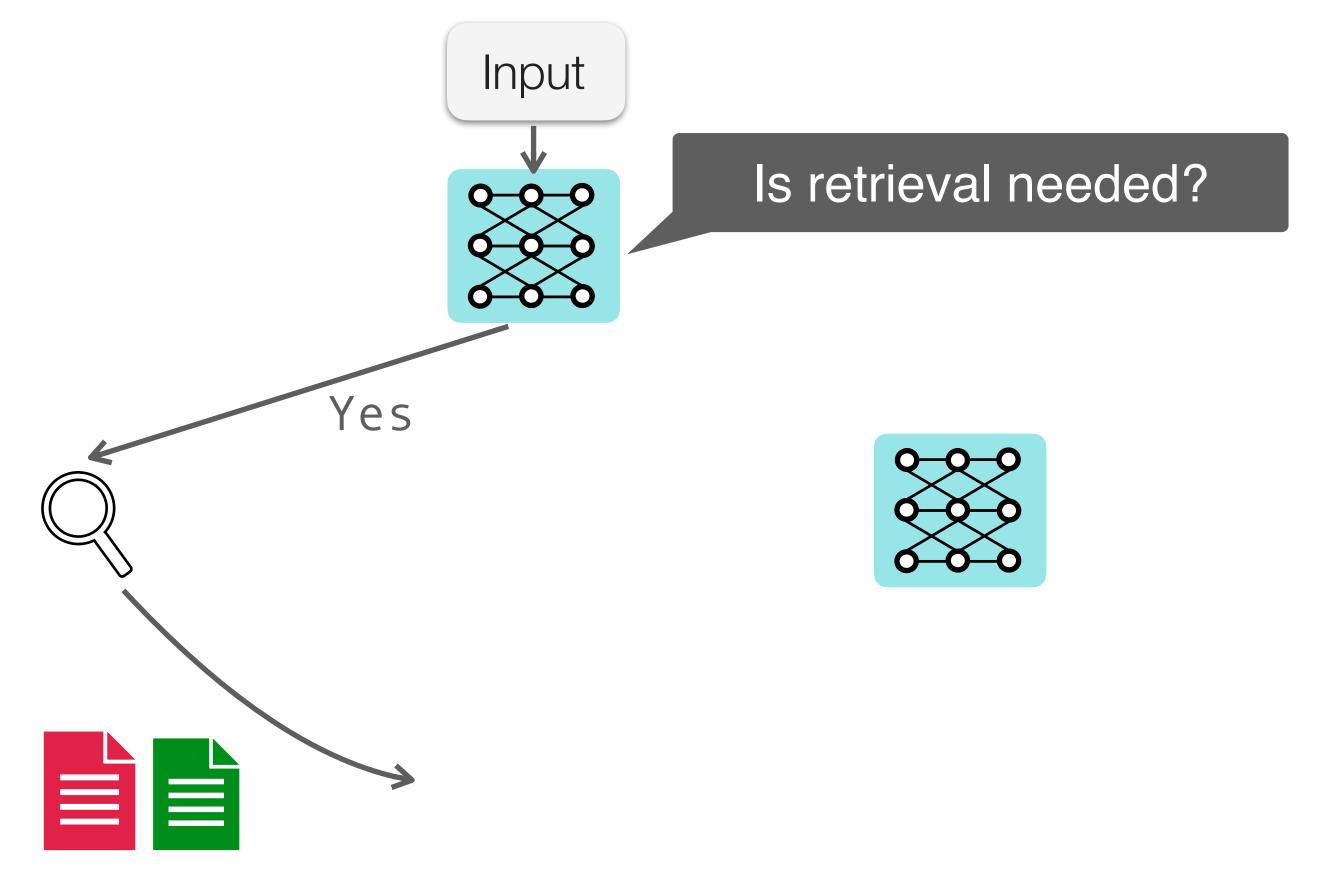


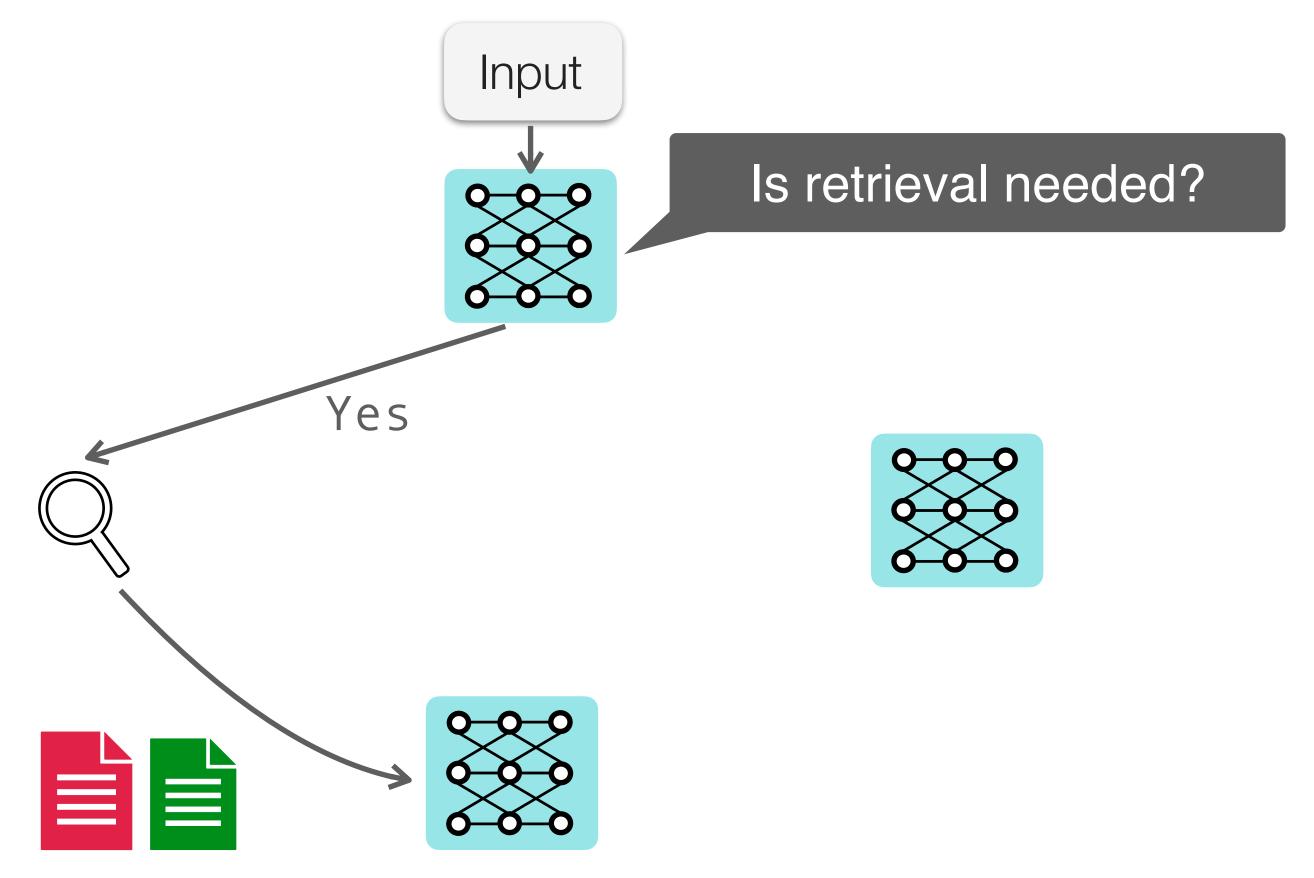


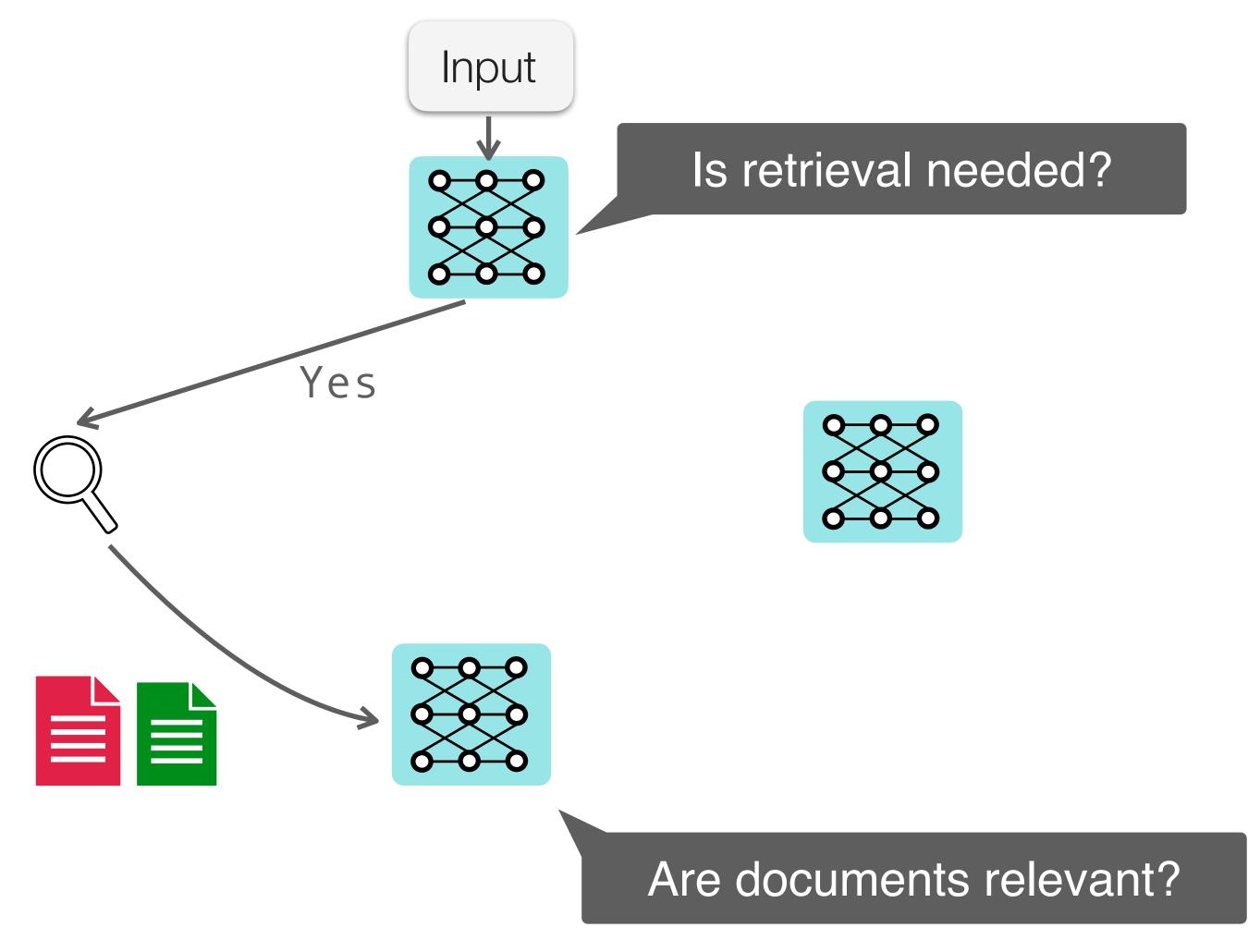


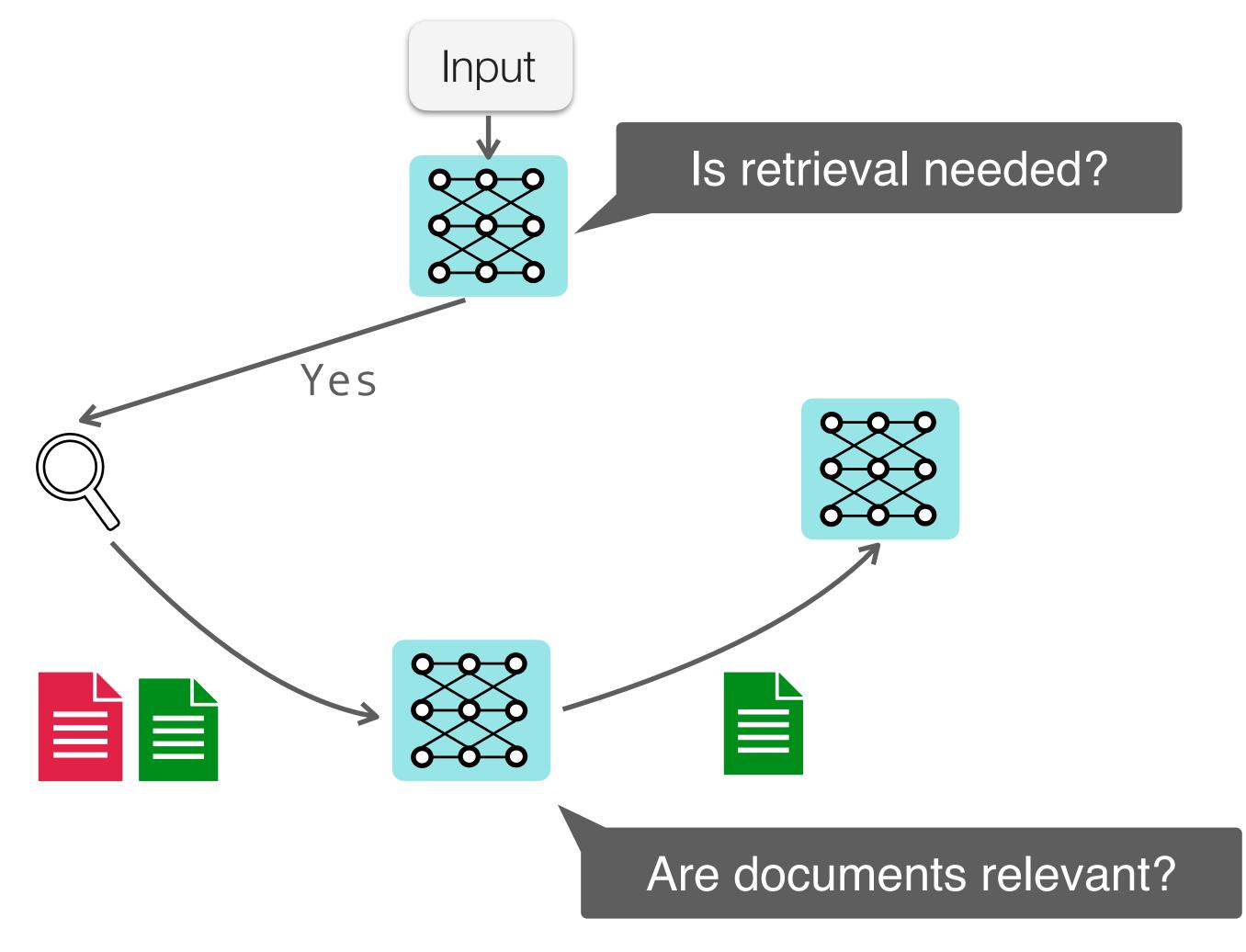


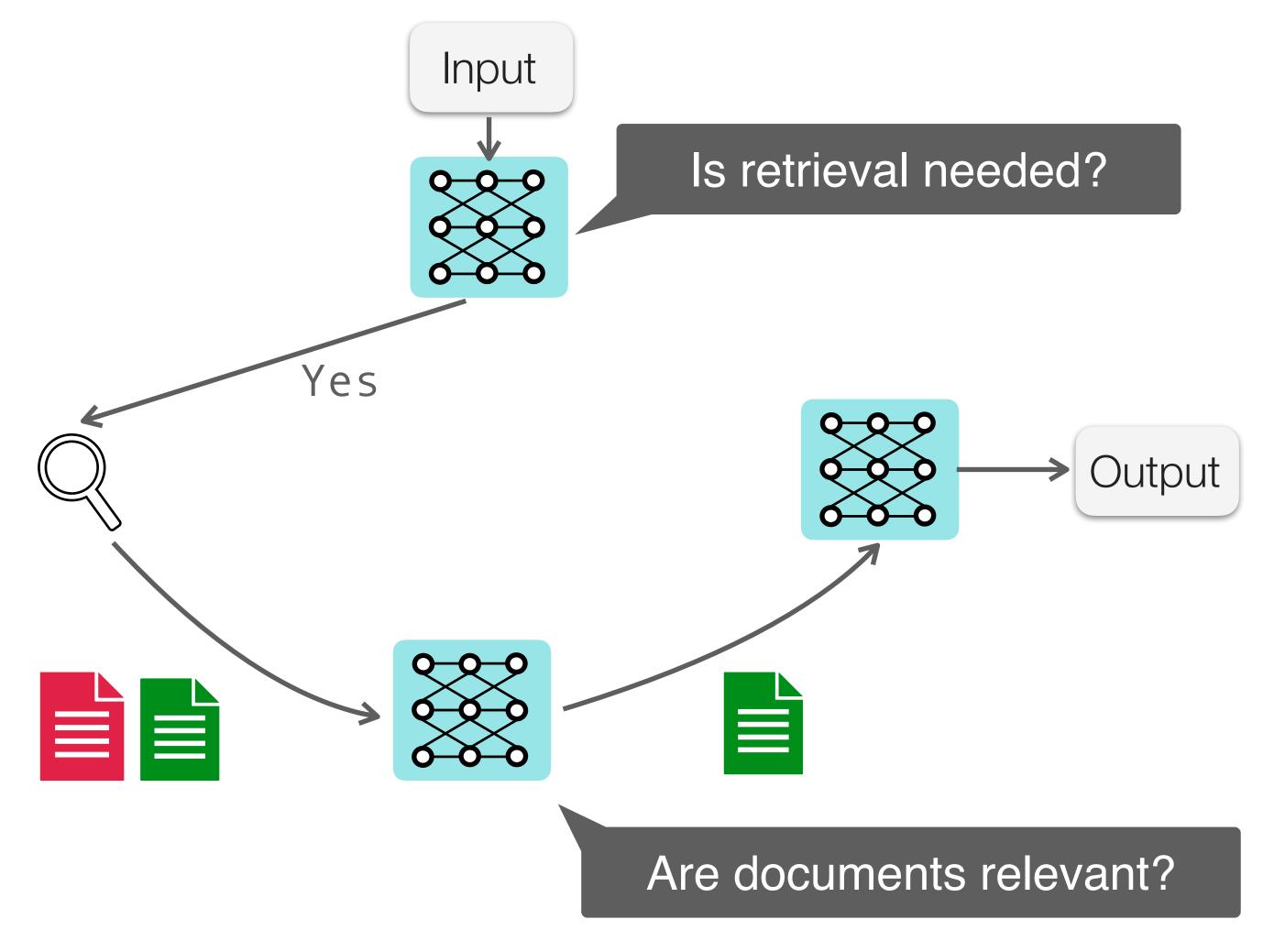


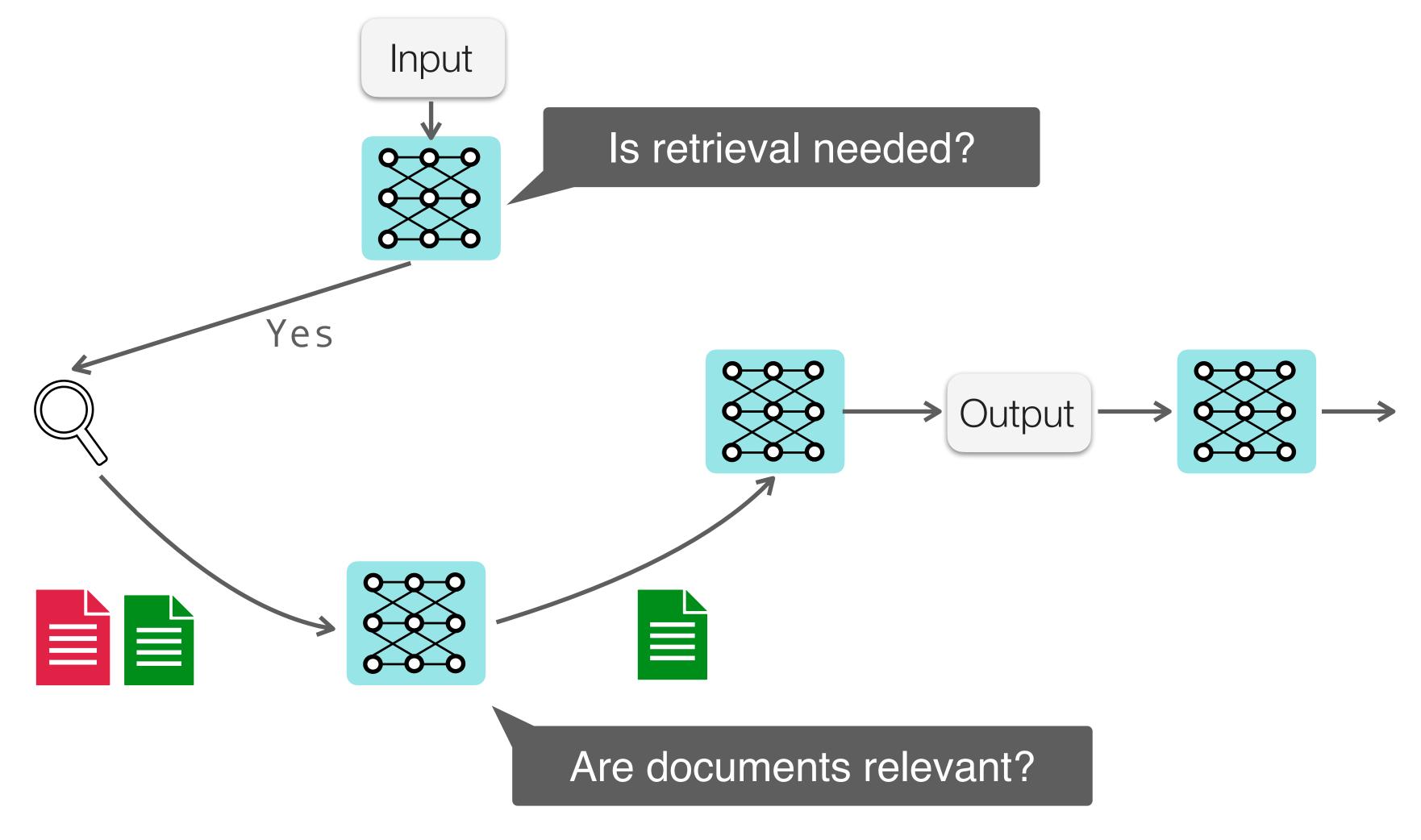


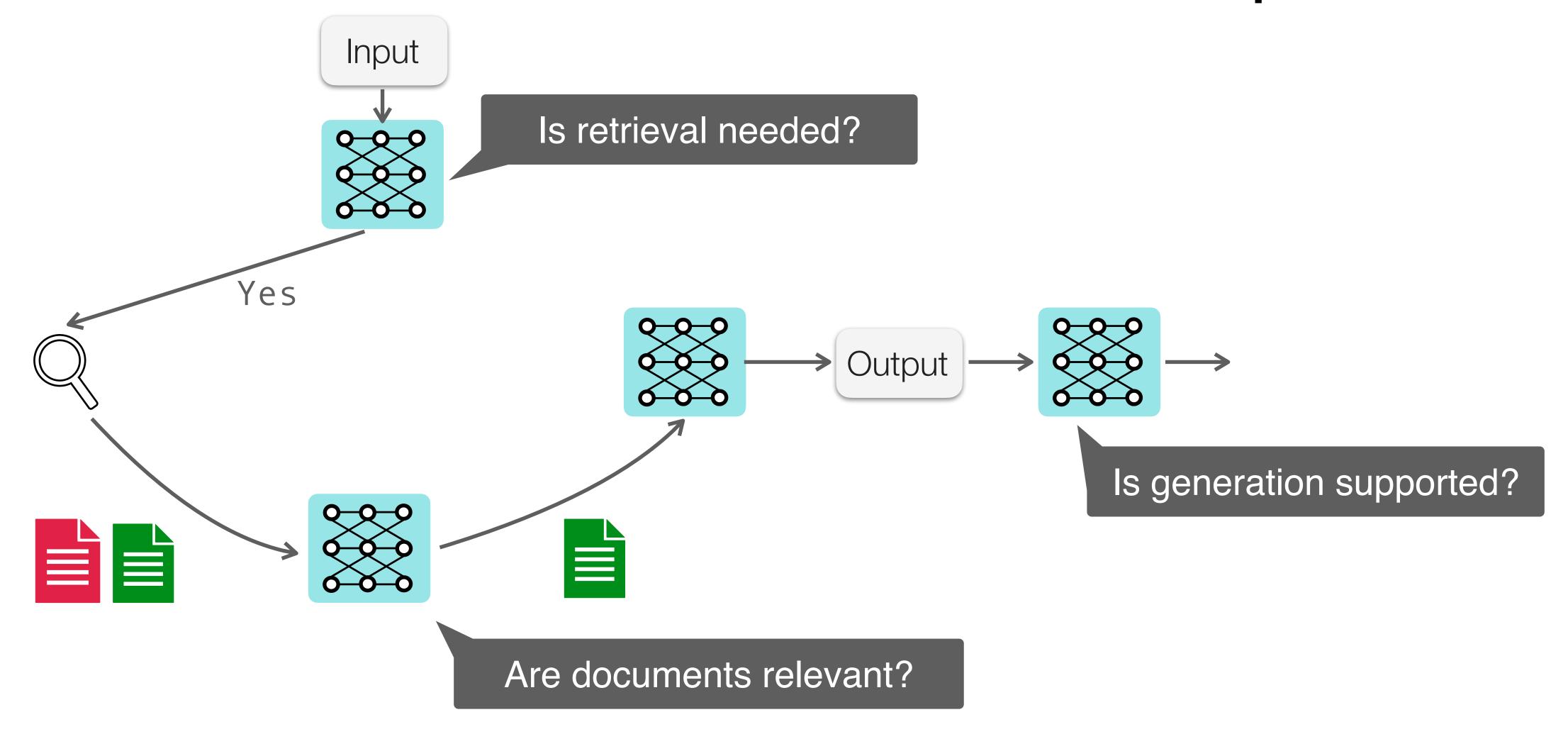


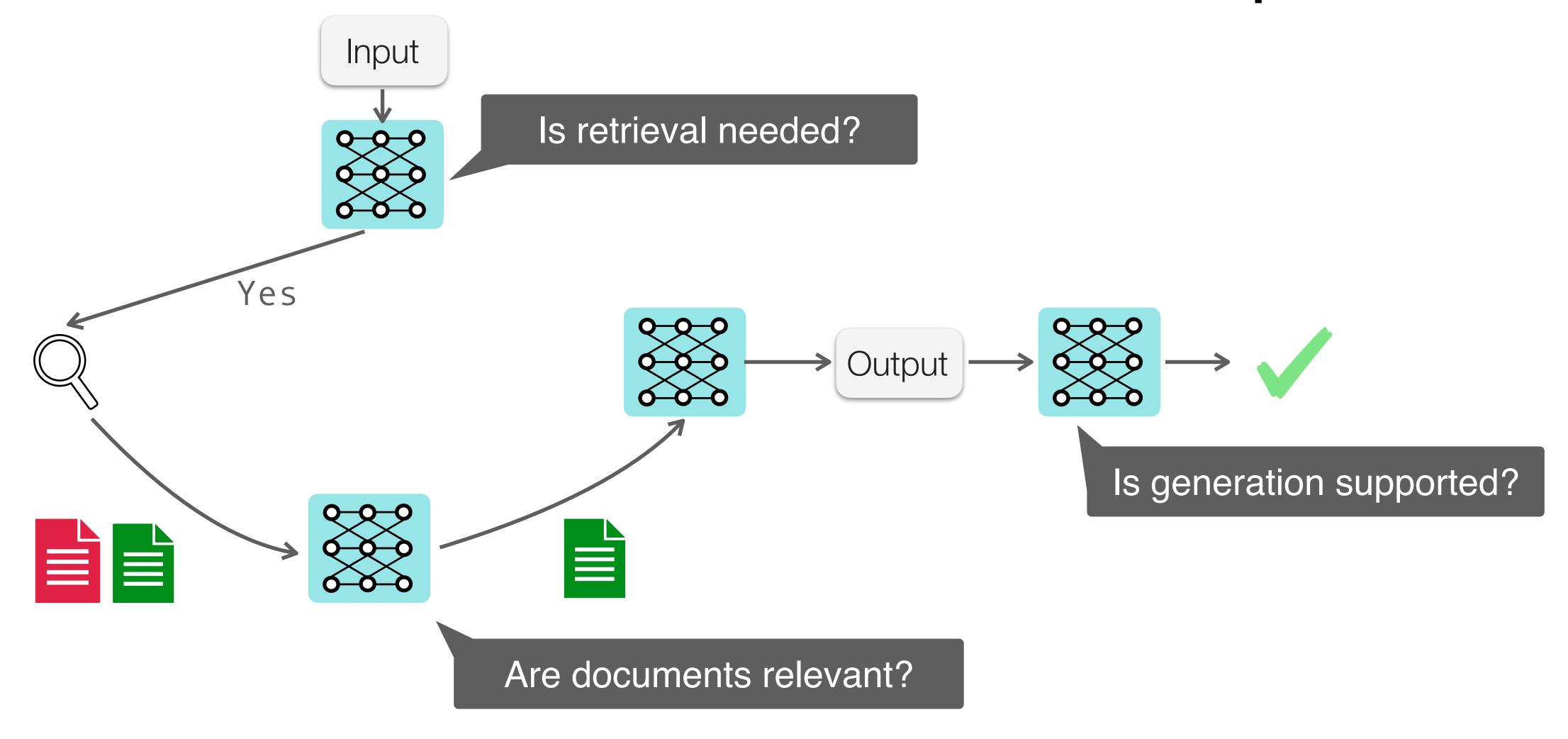


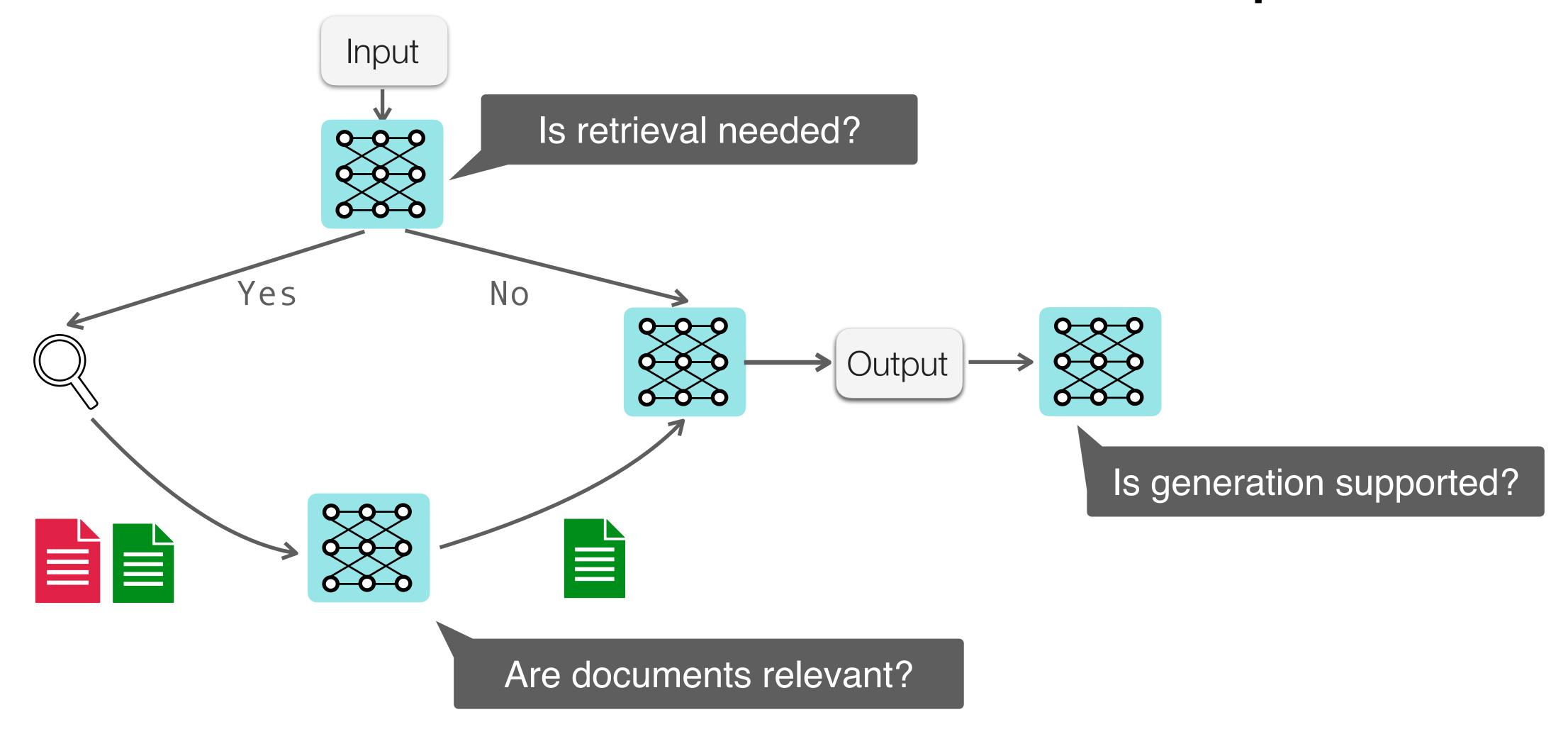


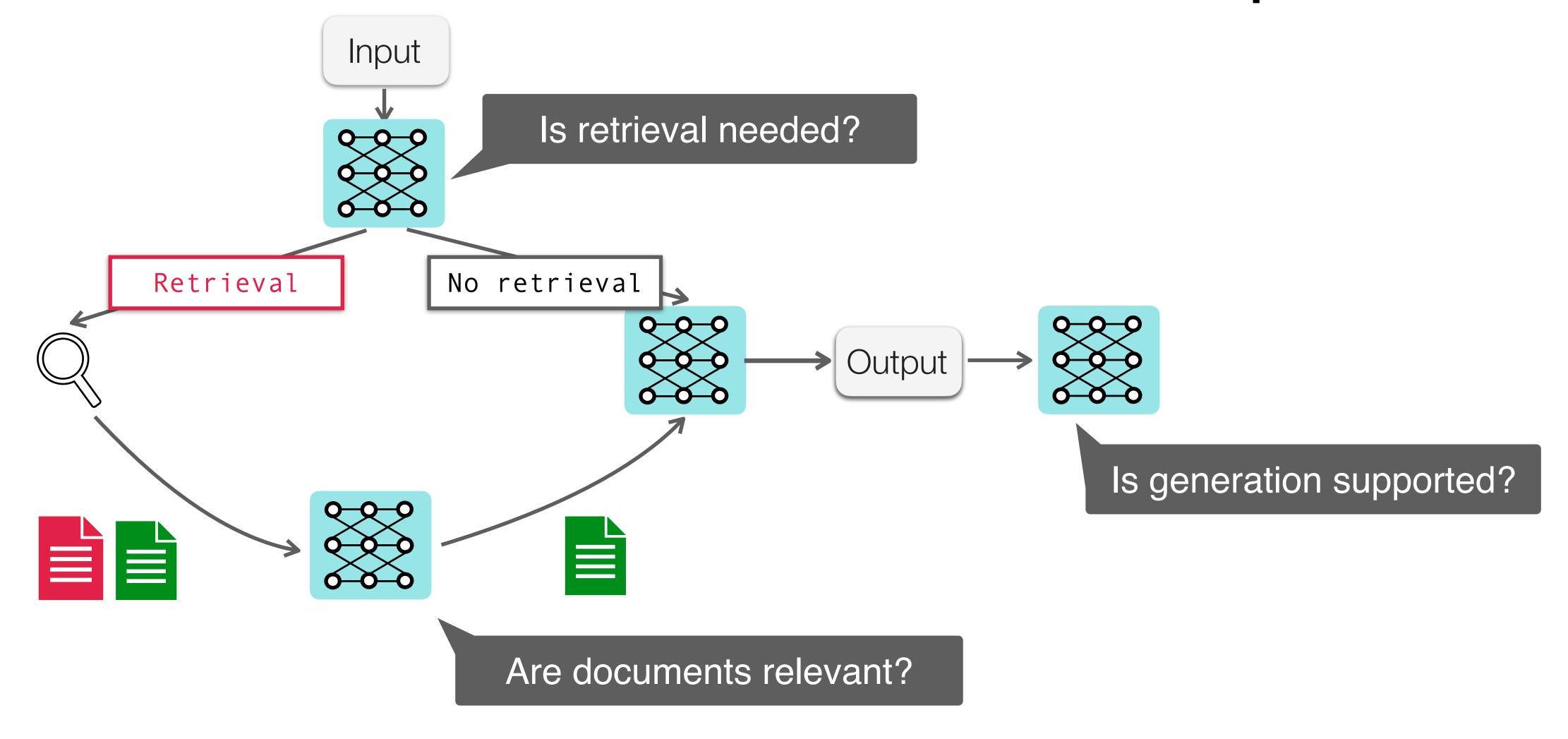


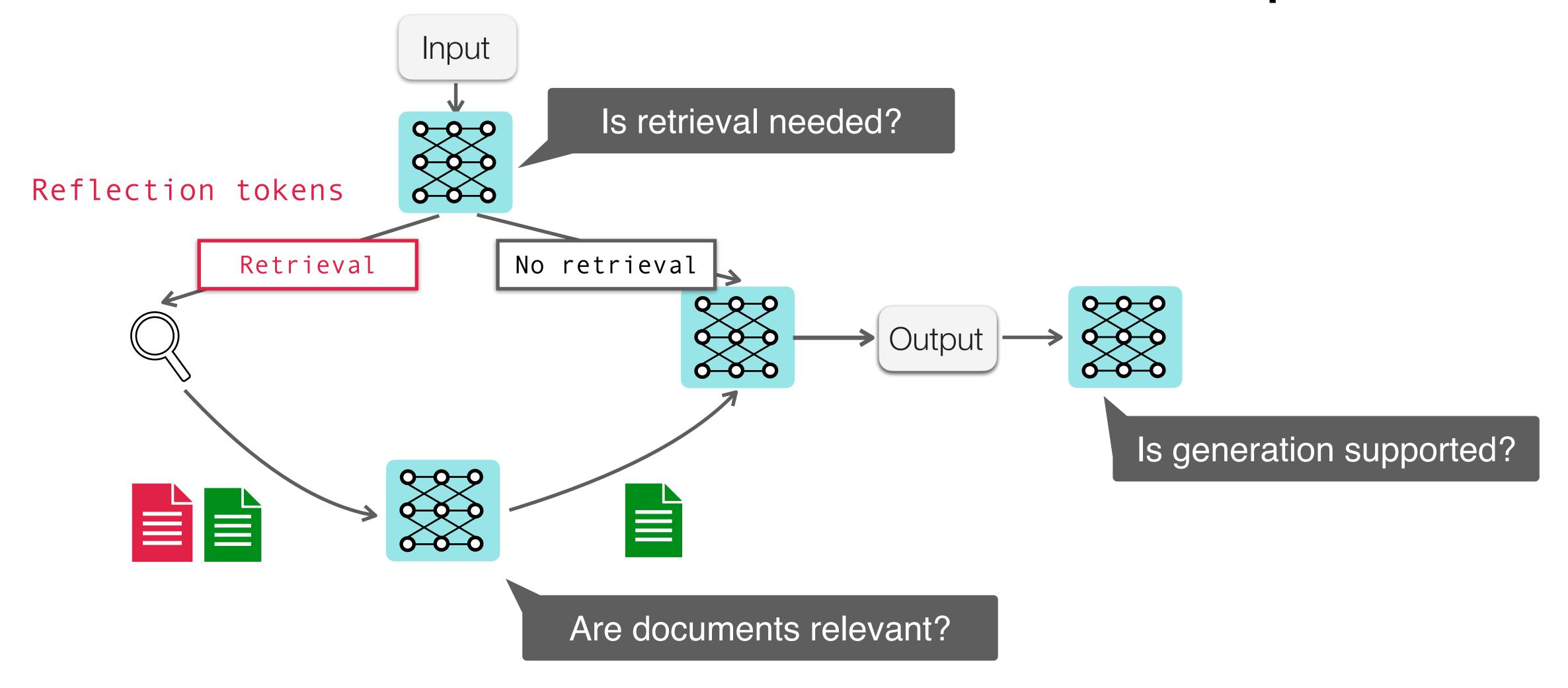


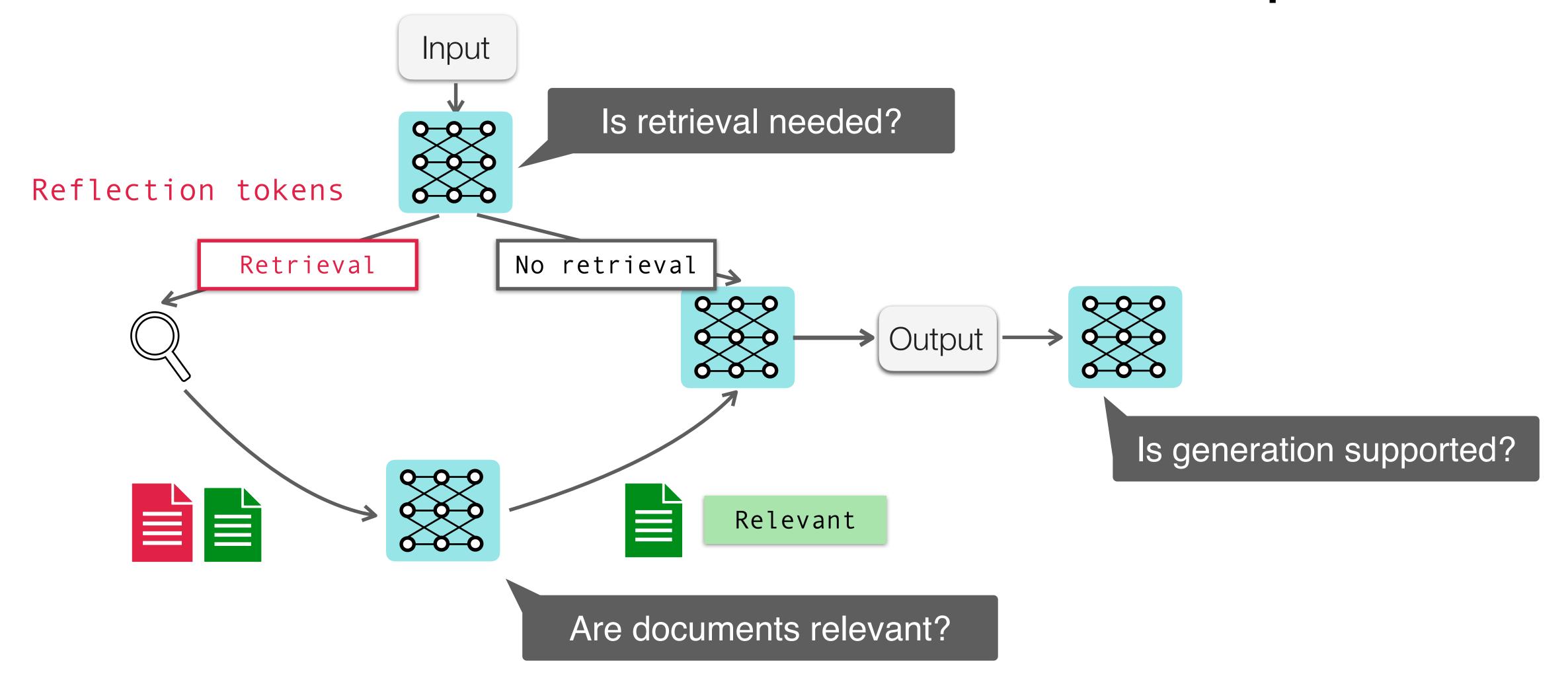


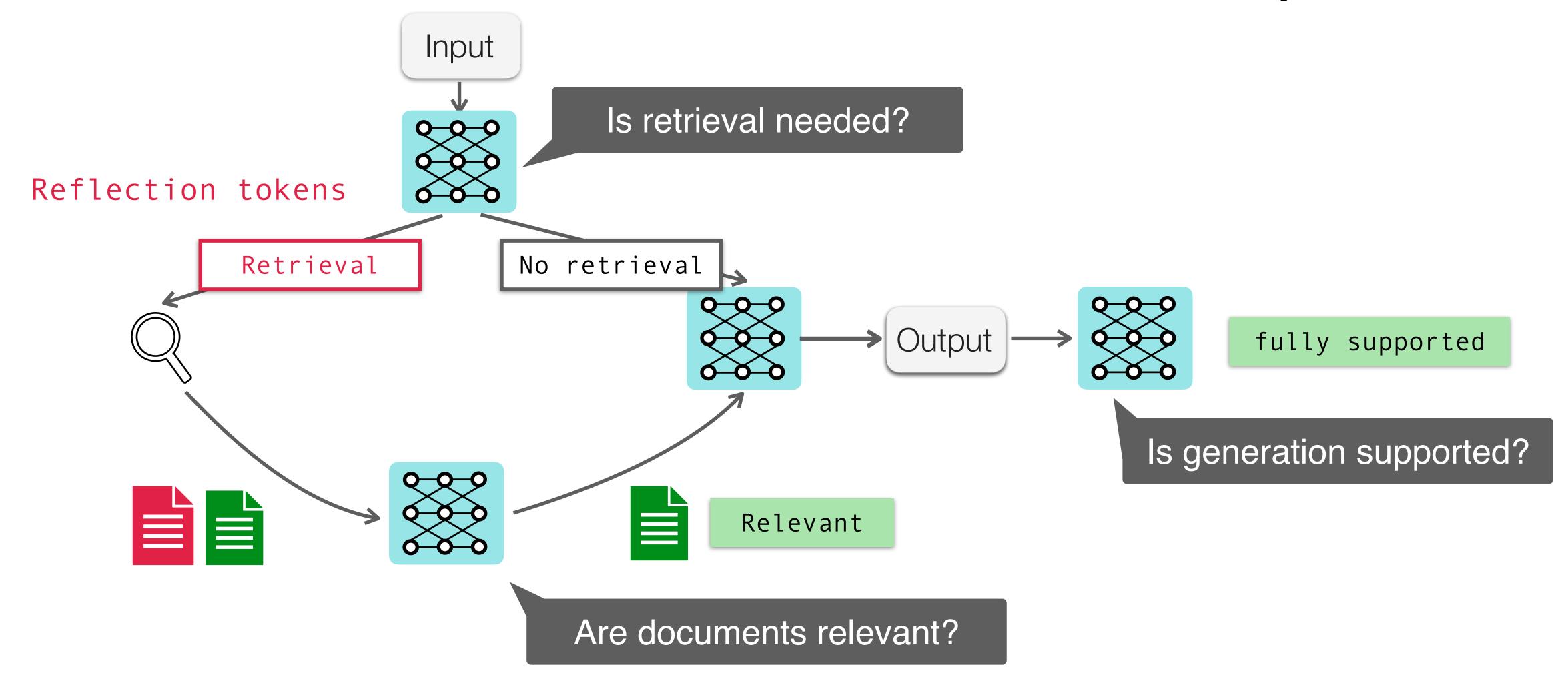






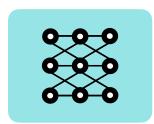






Input

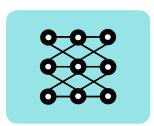
Suggest papers showing LLMs' effectiveness helping scientist to synthesize scientific literature



Sentence 1

Input

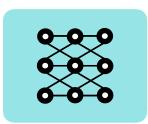
Suggest papers showing LLMs' effectiveness helping scientist to synthesize scientific literature



Sentence 1 Certainly!

Input

Suggest papers showing LLMs' effectiveness helping scientist to synthesize scientific literature



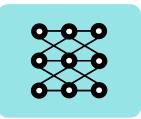
Sentence 1 Certainly!

Retrieval

Suggest papers showing LLMs' effectiveness helping scientist to synthesize Input scientific literature Sentence 1 Certainly! Retrieval

Input

Suggest papers showing LLMs' effectiveness helping scientist to synthesize scientific literature



Sentence 1 Certainly!

Retrieval

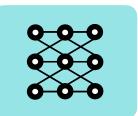
LLMs have been used in industry widely, such as chatbot system

OpenScholar is a retrieval-augmented LM designed to synthesize literature

GPT40 has shown to be effective to generate new research ideas.

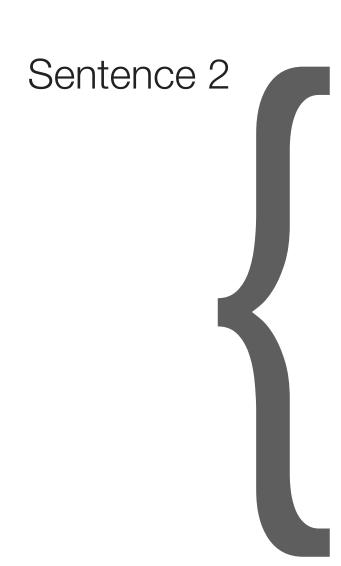
Input

Suggest papers showing LLMs' effectiveness helping scientist to synthesize scientific literature



Sentence 1 Certainly!

Retrieval



LLMs have been used in industry widely, such as chatbot system

OpenScholar is a retrieval-augmented LM designed to synthesize literature

GPT40 has shown to be effective to generate new research ideas.

Suggest papers showing LLMs' effectiveness helping scientist to synthesize Input scientific literature Sentence 1 Certainly! Retrieval Sentence 2 Irrelevant LLMs have been used in industry widely, such as chatbot system Relevant OpenScholar is a retrieval-augmented LM designed to synthesize literature

Relevant

GPT40 has shown to be effective to

generate new research ideas.

Suggest papers showing LLMs' effectiveness helping scientist to synthesize Input scientific literature Sentence 1 Certainly! Retrieval Sentence 2 Irrelevant LLMs have been widely used in science. LLMs have been used in industry widely, such as chatbot system Relevant OpenScholar is a retrieval-augmented LM designed to synthesize literature Relevant GPT40 has shown to be effective to generate new research ideas.

Suggest papers showing LLMs' effectiveness helping scientist to synthesize Input scientific literature Sentence 1 Certainly! Retrieval Sentence 2 Irrelevant LLMs have been widely used in science. LLMs have been used in industry widely, such as chatbot system Relevant OpenScholar is a retrieval-augmented LM designed to synthesize literature Relevant GPT40 has shown to be effective to generate new research ideas.

Suggest papers showing LLMs' effectiveness helping scientist to synthesize Input scientific literature Sentence 1 Certainly! Retrieval Sentence 2 Relevant OpenScholar is a retrieval-augmented LM designed to synthesize literature Relevant GPT40 has shown to be effective to generate new research ideas.

Part 3: LMs and Pipeline

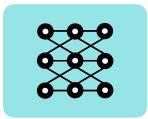
Suggest papers showing LLMs' effectiveness helping scientist to synthesize Input scientific literature Sentence 1 Certainly! Retrieval Sentence 2 Relevant OpenScholar is a retrieval-augmented LM designed to synthesize literature Relevant GPT40 has shown to be effective to generate new research ideas.

Suggest papers showing LLMs' effectiveness helping scientist to synthesize Input scientific literature Sentence 1 Certainly! Retrieval Sentence 2 Relevant OpenScholar is a retrieval-augmented LM designed to synthesize literature Relevant GPT40 has shown to be effective to

generate new research ideas.

Suggest papers showing LLMs' effectiveness helping scientist to synthesize Input scientific literature Sentence 1 Certainly! Retrieval Sentence 2 Relevant OpenScholar is a retrieval-augmented OpenScholar is an LM for LM designed to synthesize literature literature synthesis. Relevant

Suggest papers showing LLMs' effectiveness helping scientist to synthesize Input scientific literature



Sentence 1 Certainly!

Retrieval

Sentence 2 Relevant OpenScholar is an LM for literature synthesis.

> Relevant Studies show GPT4o can help scientists for idea generations and literature synthesis.

OpenScholar is a retrieval-augmented LM designed to synthesize literature

GPT40 has shown to be effective to generate new research ideas.

Input Suggest papers showing LLMs' effectiveness helping scientist to synthesize scientific literature

Sentence 1 Certainly! Retrieval

Sentence 2

Relevant OpenScholar is an LM for

literature synthesis. fully supported

Relevant Studies show GPT4o can help scientists for idea generations and literature synthesis. Partially supported

OpenScholar is a retrieval-augmented LM designed to synthesize literature

GPT40 has shown to be effective to generate new research ideas.

Suggest papers showing LLMs' effectiveness helping scientist to synthesize Input scientific literature Sentence 1 Certainly! Retrieval Sentence 2 Relevant OpenScholar is an LM for 0.9 literature synthesis. fully supported Relevant Studies show GPT4o can help scientists for idea generations and literature synthesis. Partially supported

Input Suggest papers showing LLMs' effectiveness helping scientist to synthesize scientific literature

Sentence 1 Certainly! Retrieval

Sentence 2 Relevant OpenScholar is an LM for literature synthesis. fully supported

Input Suggest papers showing LLMs' effectiveness helping scientist to synthesize scientific literature

Sentence 1 Certainly! Retrieval

Sentence 2 Relevant OpenScholar is an LM for literature synthesis. fully supported

Sentence 3

Suggest papers showing LLMs' effectiveness helping scientist to synthesize Input scientific literature Sentence 1 Certainly! Retrieval Sentence 2 Relevant OpenScholar is an LM for fully supported literature synthesis. Sentence 3 OpenScholar uses retrieval-augmented approaches.

Suggest papers showing LLMs' effectiveness helping scientist to synthesize Input scientific literature Sentence 1 Certainly! Retrieval Sentence 2 Relevant OpenScholar is an LM for fully supported literature synthesis. Sentence 3 OpenScholar uses retrieval-augmented approaches. fully supported

Tool-Augmented LMs

The Brown Act is California's law [WikiSearch("Brown Act") → The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies.] that requires legislative bodies, like city councils, to hold their meetings open to the public.

Use search as needed via API calls

Tool-Augmented LMs

The Brown Act is California's law [WikiSearch("Brown Act") → The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies.] that requires legislative bodies, like city councils, to hold their meetings open to the public.

Use search as needed via API calls

Out of 1400 participants, 400 (or [Calculator(400 / 1400)] → 0.29] 29%) passed the test.

The name derives from "la tortuga", the Spanish word for [MT("tortuga") → turtle] turtle.

Can be flexibly extended to other tools

Example from WebWalkerQA Dataset

Question:

What was the specific schedule for the social event held on the evening after the ACL 2023 best paper awards ceremony?

Labeled Answer:

The social event was scheduled from 7:00 PM to 10:30 PM on July 11th.

Model Output by WebThinker

schedule to see what was planned.

Okay, so the user is asking about the specific schedule of a social event that took place on the evening *after* the ACL 2023 best paper awards ceremony. First, I need to figure out when the awards ceremony actually happened. Let me search for that specifically.

<

web Page 4 [...] explicitly states that the awards were announced on July 11, 2023**, according to multiple sources: [...] Web Page 4 [...] explicitly states that the awards were announced on July 11, 2023. [...] Web Page 5 [...] mentions the award presentation occurred on July 11, 2023 [...]. Web Page 6 [...] confirms the awards were announced on July 11, 2023. [...] Web Page 9 [...] also indicates the awards were announced on July 11, 2023. [...] the awards ceremony itself was held on the **11th**. [...]
Okay, the awards ceremony was definitively on July 11, 2023. The question asks for the social event on the evening *after* the ceremony, which would be the evening of July 12. Let me search for the social events

| < | begin_search_query | ACL 2023 social events schedule | < | end_search_query | > |

In a Company of Search_results The ACL 2023 social events schedule includes the following relevant details: 1. **Social Event on July 11, 2023**: - **Time**: 7:00 PM - 10:30 PM (EDT) - **Location**: Steam Whistle Brewing [...] - **Description**: This event occurred on the evening of July 11, immediately following the Best Paper Awards ceremony (which took place earlier that day at 16:00–17:30). [...] 2. **No Explicit Social Events on July 12, 2023**: - The evening of July 12, 2023, is not listed as having any official social events in the provided sources. [...] **Note**: The primary social event referenced in the sources is on July 11, not July 12. The Best Paper Awards ceremony was held on July 11, so the subsequent evening event likely refers to the Social Event on that same day. For July 12, only daytime sessions are documented. [...] <|end_search_results|</p>
Hmm, interesting. The awards were on July 11, and the search results show a social event on the evening of July 11, immediately following the awards ceremony (7:00 PM - 10:30 PM). However, the results explicitly state there were no official social events scheduled for the evening of July 12, which is technically the evening *after* the July 11 ceremony.

Teach reasoning LMs to plan and search via SFT / RL

Example from WebWalkerQA Dataset

Question:

What was the specific schedule for the social event held on the evening after the ACL 2023 best paper awards ceremony?

Labeled Answer:

The social event was scheduled from 7:00 PM to 10:30 PM on July 11th.

Model Output by WebThinker

Okay, so the user is asking about the specific schedule of a social event that took place on the evening *after* the ACL 2023 best paper awards ceremony. First, I need to figure out when the awards ceremony actually happened. Let me search for that specifically.

| search_query|> ACL 2023 best paper awards ceremony date | search_query|>

In the ACL 2023 best paper awards ceremony took place on **July 11, 2023**, according to multiple sources: [...] Web Page 4 [...] explicitly states that the awards were announced on July 11, 2023. [...] Web Page 5 [...] mentions the award presentation occurred on July 11, 2023 [...]. Web Page 6 [...] confirms the awards were announced on July 11, 2023. [...] Web Page 9 [...] also indicates the awards were announced on July 11, 2023. [...] the awards ceremony itself was held on the **11th**. [...] < lend_search_result>
Okay, the awards ceremony was definitively on July 11, 2023. The question asks for the social event on the evening *after* the ceremony, which would be the evening of July 12. Let me search for the social events schedule to see what was planned.

| | search_query | ACL 2023 social events schedule | search_query | sea

In a CL 2023 social events schedule includes the following relevant details: 1. **Social Event on July 11, 2023**: - **Time**: 7:00 PM - 10:30 PM (EDT) - **Location**: Steam Whistle Brewing [...] - **Description**: This event occurred on the evening of July 11, immediately following the Best Paper Awards ceremony (which took place earlier that day at 16:00–17:30). [...] 2. **No Explicit Social Events on July 12, 2023**: - The evening of July 12, 2023, is not listed as having any official social events in the provided sources. [...] **Note**: The primary social event referenced in the sources is on July 11, not July 12. The Best Paper Awards ceremony was held on July 11, so the subsequent evening event likely refers to the Social Event on that same day. For July 12, only daytime sessions are documented. [...] <| elend_search_result|> Hmm, interesting. The awards were on July 11, and the search results show a social event on the evening of July 11, immediately following the awards ceremony (7:00 PM - 10:30 PM). However, the results explicitly state there were no official social events scheduled for the evening of July 12, which is technically the evening *after* the July 11 ceremony.

Teach reasoning LMs to plan and search via SFT / RL

Thinking

Example from WebWalkerQA Dataset

Question:

What was the specific schedule for the social event held on the evening after the ACL 2023 best paper awards ceremony?

Labeled Answer:

The social event was scheduled from 7:00 PM to 10:30 PM on July 11th.

Model Output by WebThinker

Okay, so the user is asking about the specific schedule of a social event that took place on the evening *after* the ACL 2023 best paper awards ceremony. First, I need to figure out when the awards ceremony actually happened. Let me search for that specifically.

<|begin_search_query|> ACL 2023 best paper awards ceremony date | <|end_search_query|> |

<

In a CL 2023 social events schedule includes the following relevant details: 1. **Social Event on July 11, 2023**: - **Time**: 7:00 PM - 10:30 PM (EDT) - **Location**: Steam Whistle Brewing [...] - **Description**: This event occurred on the evening of July 11, immediately following the Best Paper Awards ceremony (which took place earlier that day at 16:00–17:30). [...] 2. **No Explicit Social Events on July 12, 2023**: - The evening of July 12, 2023, is not listed as having any official social events in the provided sources. [...] **Note**: The primary social event referenced in the sources is on July 11, not July 12. The Best Paper Awards ceremony was held on July 11, so the subsequent evening event likely refers to the Social Event on that same day. For July 12, only daytime sessions are documented. [...] <| elend_search_result|> Hmm, interesting. The awards were on July 11, and the search results show a social event on the evening of July 11, immediately following the awards ceremony (7:00 PM - 10:30 PM). However, the results explicitly state there were no official social events scheduled for the evening of July 12, which is technically the evening *after* the July 11 ceremony.

Teach reasoning LMs to plan and search via SFT / RL

Thinking
Tool call

Example from WebWalkerQA Dataset

Question:

What was the specific schedule for the social event held on the evening after the ACL 2023 best paper awards ceremony?

Labeled Answer:

The social event was scheduled from 7:00 PM to 10:30 PM on July 11th.

Model Output by WebThinker

Okay, so the user is asking about the specific schedule of a social event that took place on the evening *after* the ACL 2023 best paper awards ceremony. First, I need to figure out when the awards ceremony actually happened. Let me search for that specifically.

<|begin_search_query|> ACL 2023 best paper awards ceremony date<|end_search_query|>

In the ACL 2023 best paper awards ceremony took place on **July 11, 2023**, according to multiple sources: [...] Web Page 4 [...] explicitly states that the awards were announced on July 11, 2023. [...] Web Page 5 [...] mentions the award presentation occurred on July 11, 2023 [...]. Web Page 6 [...] confirms the awards were announced on July 11, 2023. [...] Web Page 9 [...] also indicates the awards were announced on July 11, 2023. [...] the awards ceremony itself was held on the **11th**. [...] <a href=

Okay, the awards ceremony was definitively on July 11, 2023. The question asks for the social event on the evening *after* the ceremony, which would be the evening of July 12. Let me search for the social events schedule to see what was planned.

 ACL 2023 social events schedule lend_search_query|> |

In a Company of Schools The ACL 2023 social events schedule includes the following relevant details: 1. **Social Event on July 11, 2023**: - **Time**: 7:00 PM - 10:30 PM (EDT) - **Location**: Steam Whistle Brewing [...] - **Description**: This event occurred on the evening of July 11, immediately following the Best Paper Awards ceremony (which took place earlier that day at 16:00–17:30). [...] 2. **No Explicit Social Events on July 12, 2023**: - The evening of July 12, 2023, is not listed as having any official social events in the provided sources. [...] **Note**: The primary social event referenced in the sources is on July 11, not July 12. The Best Paper Awards ceremony was held on July 11, so the subsequent evening event likely refers to the Social Event on that same day. For July 12, only daytime sessions are documented. [...] <|elend_search_result|> Hmm, interesting. The awards were on July 11, and the search results show a social event on the evening of July 11, immediately following the awards ceremony (7:00 PM - 10:30 PM). However, the results explicitly state there were no official social events scheduled for the evening of July 12, which is technically the evening *after* the July 11 ceremony.

Teach reasoning LMs to plan and search via SFT / RL

Thinking

Tool call

Search output

Example from WebWalkerQA Dataset

Question:

What was the specific schedule for the social event held on the evening after the ACL 2023 best paper awards ceremony?

Labeled Answer:

The social event was scheduled from 7:00 PM to 10:30 PM on July 11th.

Model Output by WebThinker

Okay, so the user is asking about the specific schedule of a social event that took place on the evening *after* the ACL 2023 best paper awards ceremony. First, I need to figure out when the awards ceremony actually happened. Let me search for that specifically.

<|begin_search_query|> ACL 2023 best paper awards ceremony date <|end_search_query|>

| Segin_search_result|> The ACL 2023 best paper awards ceremony took place on **July 11, 2023**, according to multiple sources: [...] Web Page 4 [...] explicitly states that the awards were announced on July 11, 2023. [...] Web Page 5 [...] mentions the award presentation occurred on July 11, 2023 [...]. Web Page 6 [...] confirms the awards were announced on July 11, 2023. [...] Web Page 9 [...] also indicates the awards were announced on July 11, 2023. [...] the awards ceremony itself was held on the **11th**. [...] < lend_search_result|> Okay, the awards ceremony was definitively on July 11, 2023. The question asks for the social event on the evening *after* the ceremony, which would be the evening of July 12. Let me search for the social events schedule to see what was planned.

 ACL 2023 social events schedule |

In a CL 2023 social events schedule includes the following relevant details: 1. **Social Event on July 11, 2023**: - **Time**: 7:00 PM – 10:30 PM (EDT) - **Location**: Steam Whistle Brewing [...] - **Description**: This event occurred on the evening of July 11, immediately following the Best Paper Awards ceremony (which took place earlier that day at 16:00–17:30). [...] 2. **No Explicit Social Events on July 12, 2023**: - The evening of July 12, 2023, is not listed as having any official social events in the provided sources. [...] **Note**: The primary social event referenced in the sources is on July 11, not July 12. The Best Paper Awards ceremony was held on July 11, so the subsequent evening event likely refers to the Social Event on that same day. For July 12, only daytime sessions are documented. [...] <|elnd_search_result|> Hmm, interesting. The awards were on July 11, and the search results show a social event on the evening of July 11, immediately following the awards ceremony (7:00 PM - 10:30 PM). However, the results explicitly state there were no official social events scheduled for the evening of July 12, which is technically the evening *after* the July 11 ceremony.

Teach reasoning LMs to plan and search via SFT / RL

Thinking

Tool call

Search output

Thinking

Example from WebWalkerQA Dataset

Question:

What was the specific schedule for the social event held on the evening after the ACL 2023 best paper awards ceremony?

Labeled Answer:

The social event was scheduled from 7:00 PM to 10:30 PM on July 11th.

Model Output by WebThinker

Okay, so the user is asking about the specific schedule of a social event that took place on the evening *after* the ACL 2023 best paper awards ceremony. First, I need to figure out when the awards ceremony actually happened. Let me search for that specifically.

<|begin_search_query|> ACL 2023 best paper awards ceremony date <|end_search_query|>

\leftarrow{\leftar

 ACL 2023 social events schedule |

<!begin_search_result> The ACL 2023 social events schedule includes the following relevant details: 1. **Social Event on July 11, 2023**: - **Time**: 7:00 PM - 10:30 PM (EDT) - **Location**: Steam Whistle Brewing [...] - **Description**: This event occurred on the evening of July 11, immediately following the Best Paper Awards ceremony (which took place earlier that day at 16:00–17:30). [...] 2. **No Explicit Social Events on July 12, 2023**: - The evening of July 12, 2023, is not listed as having any official social events in the provided sources. [...] **Note**: The primary social event referenced in the sources is on July 11, not July 12. The Best Paper Awards ceremony was held on July 11, so the subsequent evening event likely refers to the Social Event on that same day. For July 12, only daytime sessions are documented. [...] <|elend_search_result|> Hmm, interesting. The awards were on July 11, and the search results show a social event on the evening of July 11, immediately following the awards ceremony (7:00 PM - 10:30 PM). However, the results explicitly state there were no official social events scheduled for the evening of July 12, which is technically the evening *after* the July 11 ceremony.

Teach reasoning LMs to plan and search via SFT / RL

Thinking

Tool call

Search output

Thinking
Tool call

Example from WebWalkerQA Dataset

Question:

What was the specific schedule for the social event held on the evening after the ACL 2023 best paper awards ceremony?

Labeled Answer:

The social event was scheduled from 7:00 PM to 10:30 PM on July 11th.

Model Output by WebThinker

schedule to see what was planned.

Okay, so the user is asking about the specific schedule of a social event that took place on the evening *after* the ACL 2023 best paper awards ceremony. First, I need to figure out when the awards ceremony actually happened. Let me search for that specifically.

<|begin_search_query|> ACL 2023 best paper awards ceremony date <|end_search_query|>

| < | begin_search_query | ACL 2023 social events schedule | < | end_search_query | >

In a Company of Search_results The ACL 2023 social events schedule includes the following relevant details: 1. **Social Event on July 11, 2023**: - **Time**: 7:00 PM - 10:30 PM (EDT) - **Location**: Steam Whistle Brewing [...] - **Description**: This event occurred on the evening of July 11, immediately following the Best Paper Awards ceremony (which took place earlier that day at 16:00–17:30). [...] 2. **No Explicit Social Events on July 12, 2023**: - The evening of July 12, 2023, is not listed as having any official social events in the provided sources. [...] **Note**: The primary social event referenced in the sources is on July 11, not July 12. The Best Paper Awards ceremony was held on July 11, so the subsequent evening event likely refers to the Social Event on that same day. For July 12, only daytime sessions are documented. [...] <| elend_search_results | Hmm, interesting. The awards were on July 11, and the search results show a social event on the evening of July 11, immediately following the awards ceremony (7:00 PM - 10:30 PM). However, the results explicitly state there were no official social events scheduled for the evening of July 12, which is technically the evening *after* the July 11 ceremony.</p>

Teach reasoning LMs to plan and search via SFT / RL

Thinking

Tool call

Search output

Thinking
Tool call

Search output

Example from WebWalkerQA Dataset

Question:

What was the specific schedule for the social event held on the evening after the ACL 2023 best paper awards ceremony?

Labeled Answer:

The social event was scheduled from 7:00 PM to 10:30 PM on July 11th.

Model Output by WebThinker

schedule to see what was planned.

Okay, so the user is asking about the specific schedule of a social event that took place on the evening *after* the ACL 2023 best paper awards ceremony. First, I need to figure out when the awards ceremony actually happened. Let me search for that specifically.

<|begin_search_query|> ACL 2023 best paper awards ceremony date <|end_search_query|>

| < | begin_search_query | ACL 2023 social events schedule | < | end_search_query | >

Event on July 11, 2023**: - **Time**: 7:00 PM - 10:30 PM (EDT) - **Location**: Steam Whistle Brewing [...] - **Description**: This event occurred on the evening of July 11, immediately following the Best Paper Awards ceremony (which took place earlier that day at 16:00–17:30). [...] 2. **No Explicit Social Events on July 12, 2023**: - The evening of July 12, 2023, is not listed as having any official social events in the provided sources. [...] **Note**: The primary social event referenced in the sources is on July 11, not July 12. The Best Paper Awards ceremony was held on July 11, so the subsequent evening event likely refers to the Social Event on that same day. For July 12, only daytime sessions are documented. [...] <|end_search_results| Hmm, interesting. The awards were on July 11, and the search results show a social event on the evening of July 11, immediately following the awards ceremony (7:00 PM - 10:30 PM). However, the results explicitly state there were no official social events scheduled for the evening of July 12, which is technically the evening *after* the July 11 ceremony.

Teach reasoning LMs to plan and search via SFT / RL

Thinking

Tool call

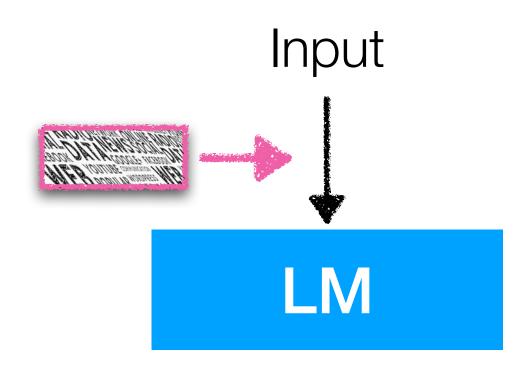
Search output

Thinking
Tool call

Search output

Thinking

Input Augmentation



- Augment input of LMs
- Easy to apply (w/o training)& effective
- Difficulty of using many D

e.g., RAG

Intermediate Fusion

Not scalable to many documents (needs context engineering)

- Mo Not strictly grounded in intermediate layers
- Scalable to many passages
- Requires retraining

Limited effectiveness on ta

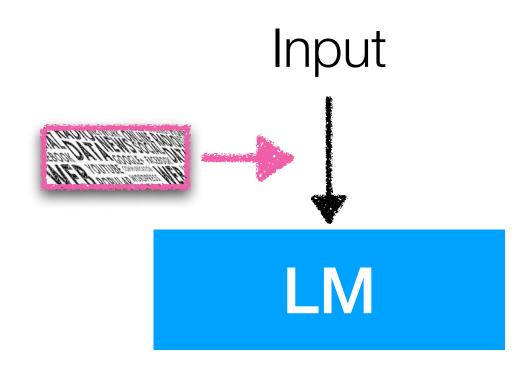
e.g., RETRO, InstructRETRO

e.g., kNNLN

Part 3: LMs and Pipeline

66

Input Augmentation



- Augment input of LMs
- Easy to apply (w/o training)
 & effective
- Difficulty of using many D

e.g., RAG

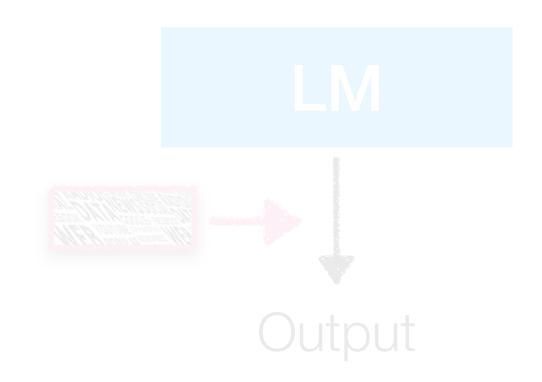
Intermediate Fusion



- Modify LMs to incorporate D in intermediate layers
- Scalable to many passages
- Requires retraining

e.g., RETRO, InstructRETRO

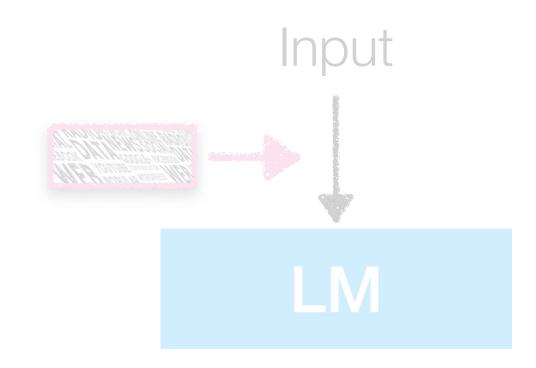
Output Interpolation



- Directly manipulate output token distributions
- No training required*
- Limited effectiveness on tasks

e.g., kNNLN

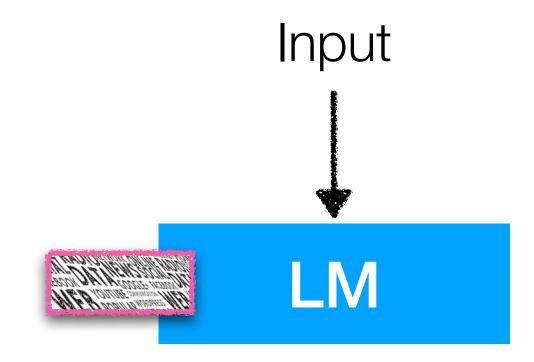
Input Augmentation



- Augment input of LMs
- Easy to apply (w/o training)
 & effective
- Difficulty of using many D

e.g., RAG

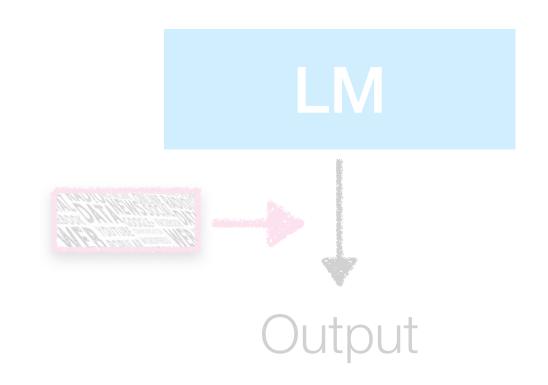
Intermediate Fusion



- Modify LMs to incorporate D in intermediate layers
- Scalable to many passages
- Requires retraining

e.g., RETRO, InstructRETRO

Output Interpolation

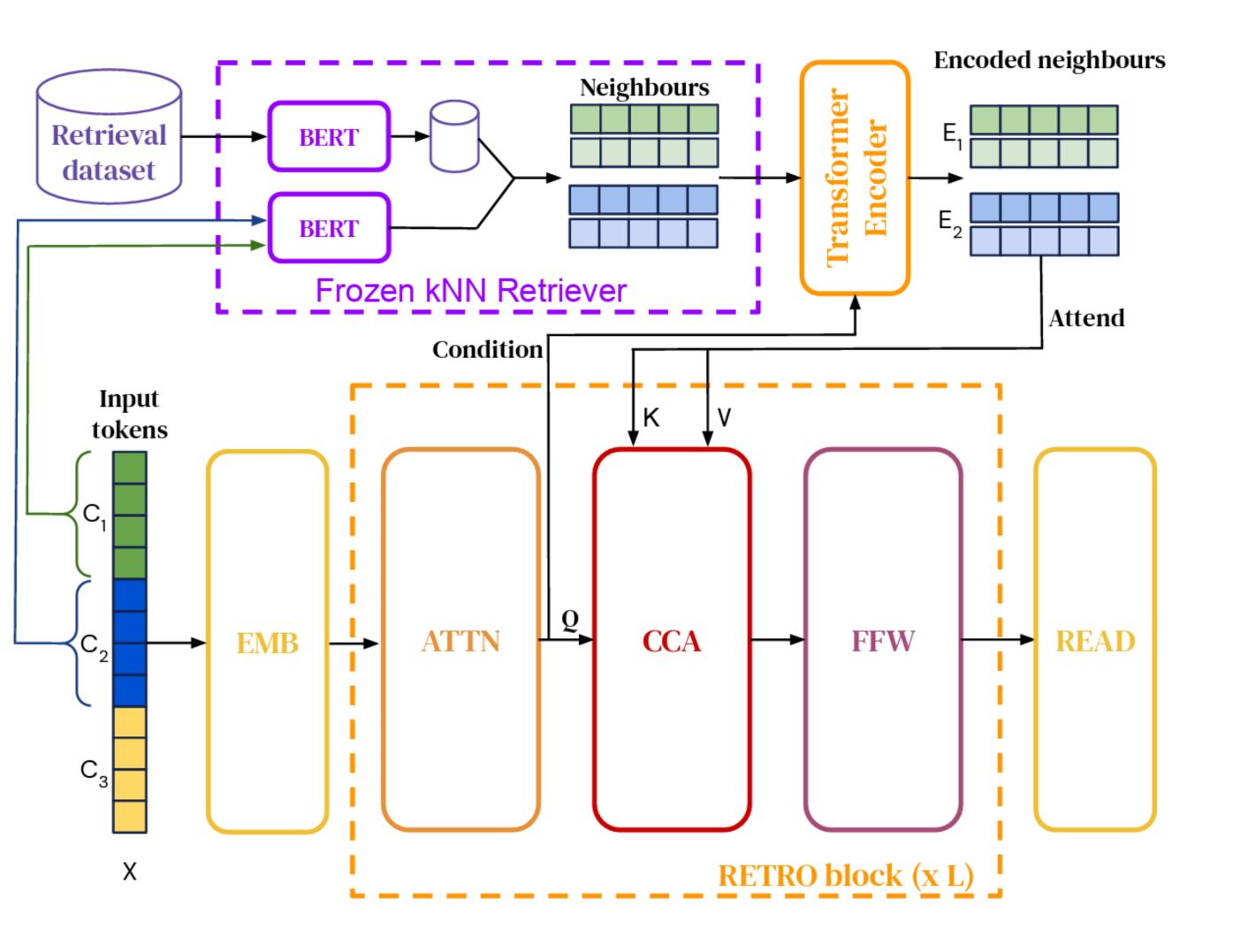


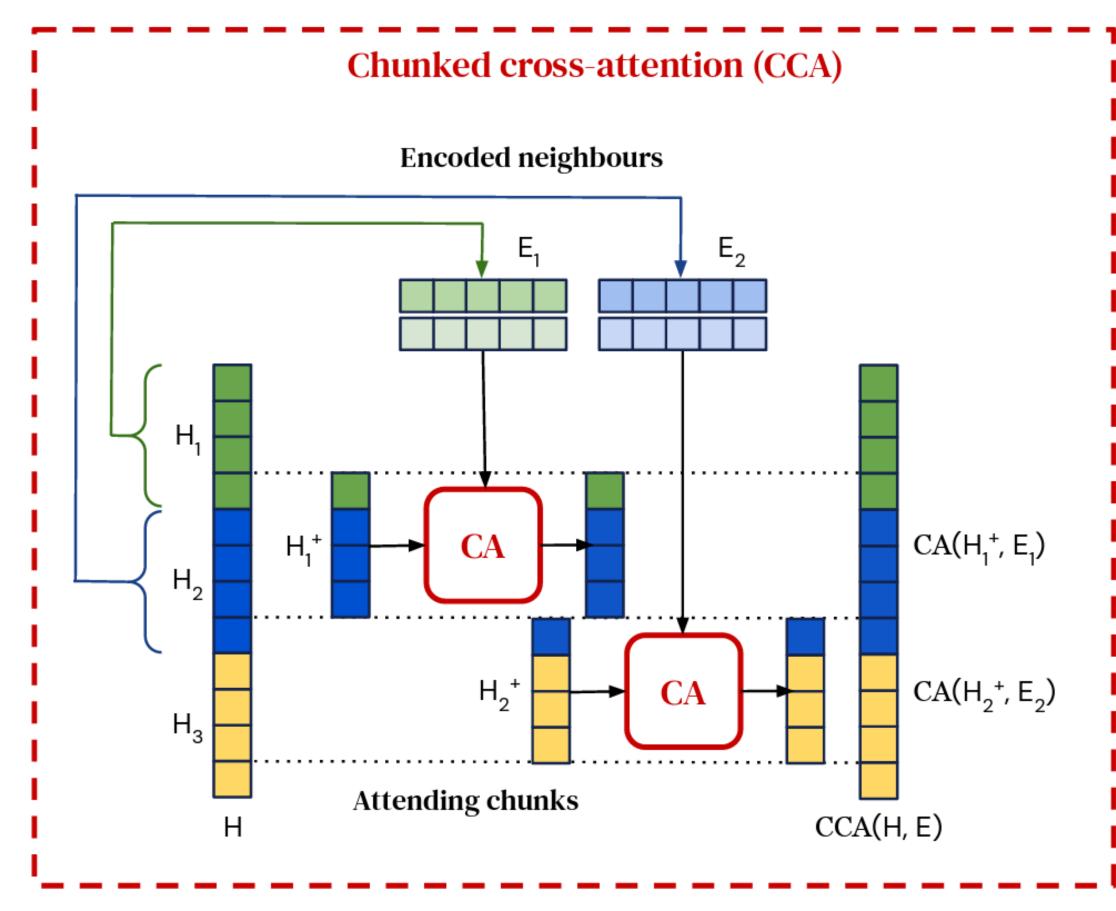
- Directly manipulate output token distributions
- No training required*
- Limited effectiveness on tasks

e.g., kNNLM

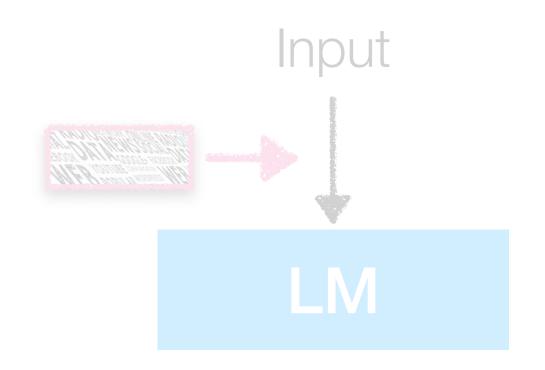
Part 3: LMs and Pipeline

RETRO (Borgeaud et al., 2022)





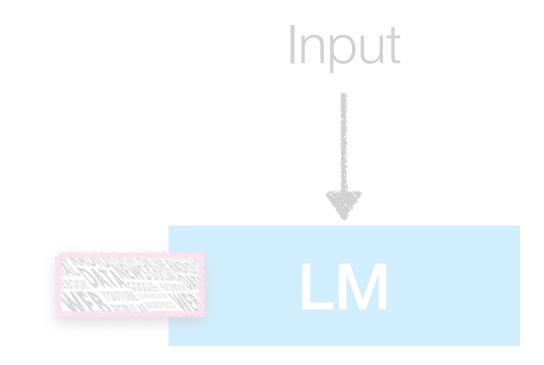
Input Augmentation



- Augment input of LMs
- Easy to apply (w/o training)
 & effective
- Difficulty of using many D

e.g., RAG

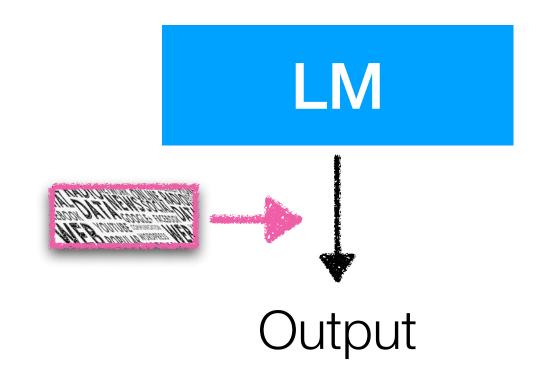
Intermediate Fusion



- Modify LMs to incorporate D in intermediate layers
- Scalable to many passages
- Requires retraining

e.g., RETRO, InstructRETRO

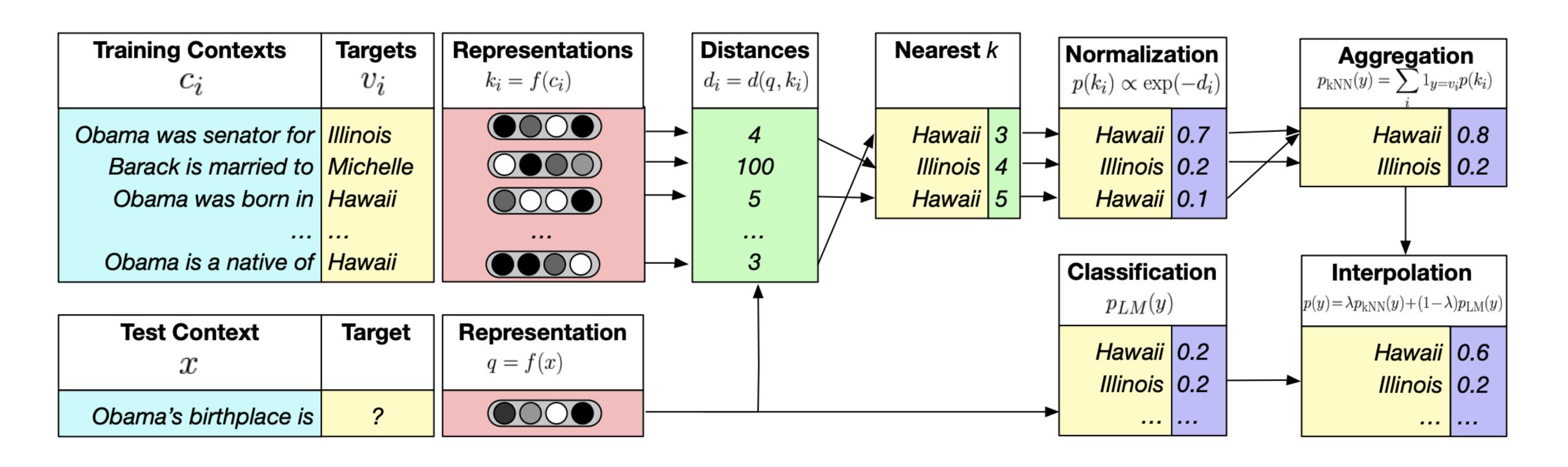
Output Interpolation



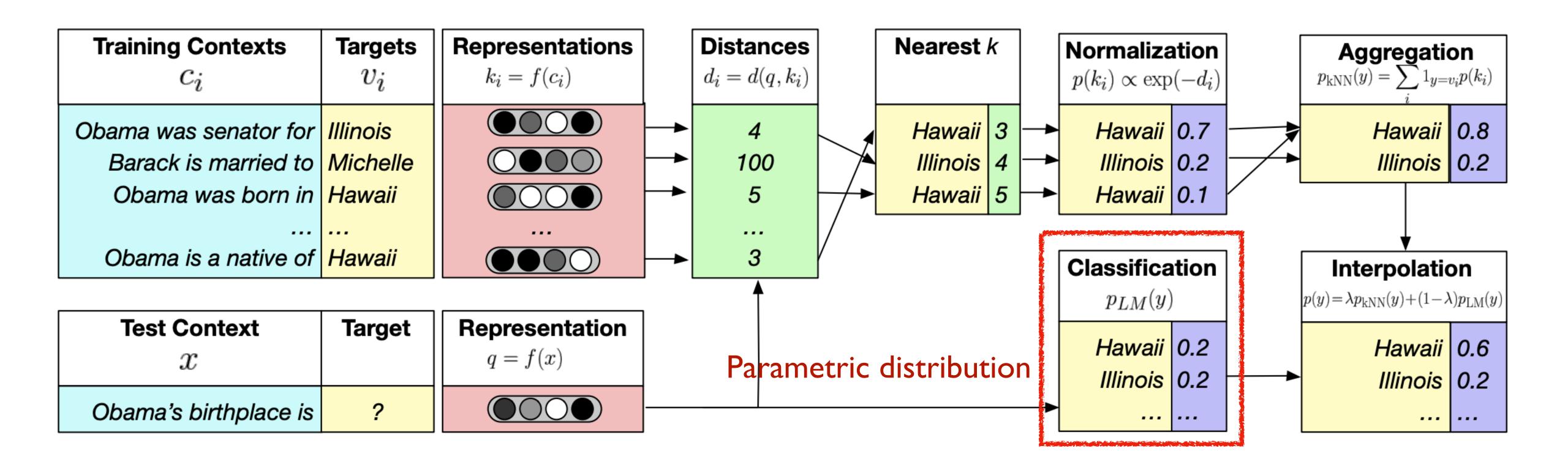
- Directly manipulate output token distributions
- No training required*
- Limited effectiveness on tasks

e.g., kNNLM

Part 3: LMs and Pipeline

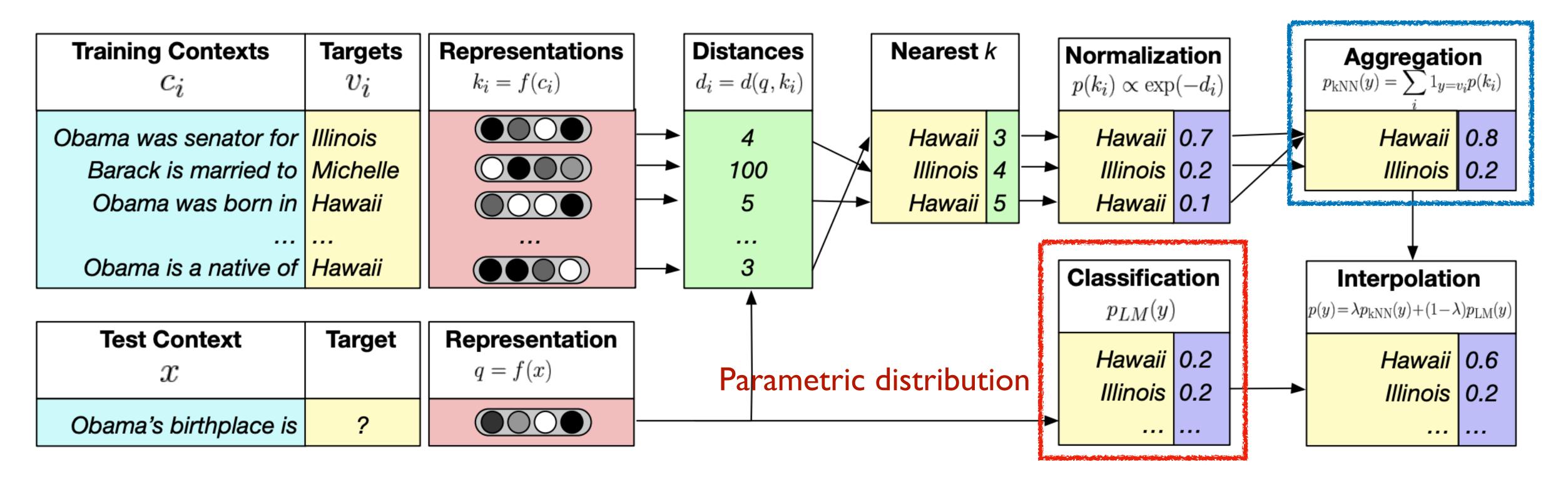


$$P_{kNN-LM}(y | x) = (1 - \lambda)P_{LM}(y | x) + \lambda P_{kNN}(y | x)$$



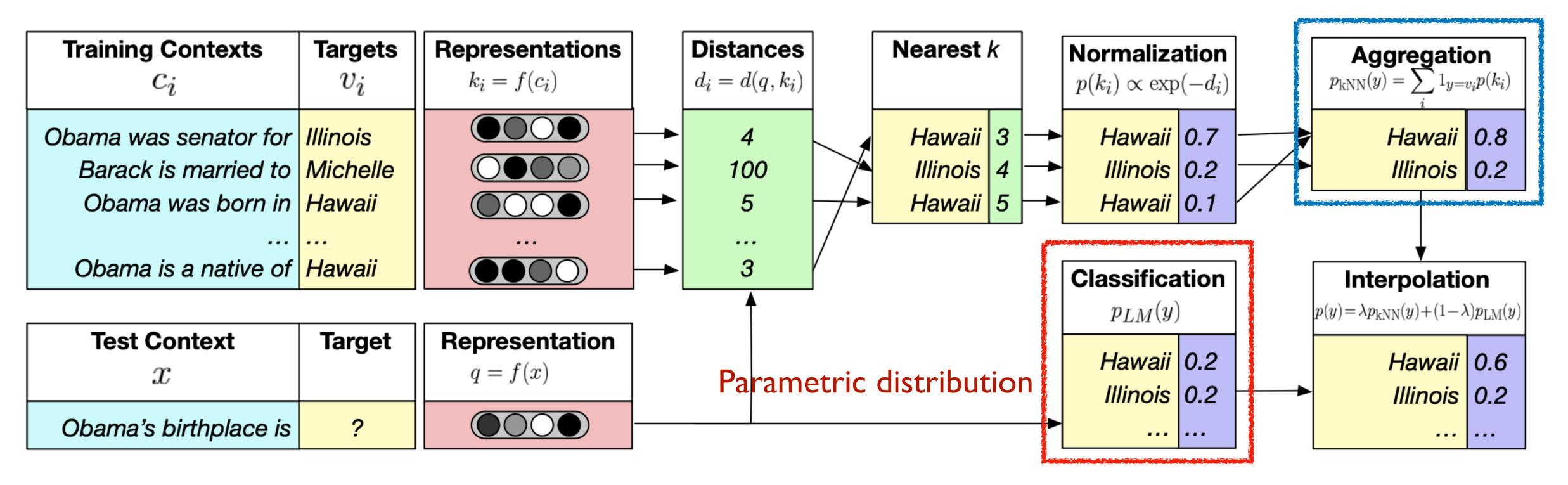
$$P_{kNN-LM}(y | x) = (1 - \lambda)P_{LM}(y | x) + \lambda P_{kNN}(y | x)$$

Nonparametric distribution



$$P_{k\text{NN-LM}}(y | x) = (1 - \lambda)P_{LM}(y | x) + \lambda P_{k\text{NN}}(y | x)$$

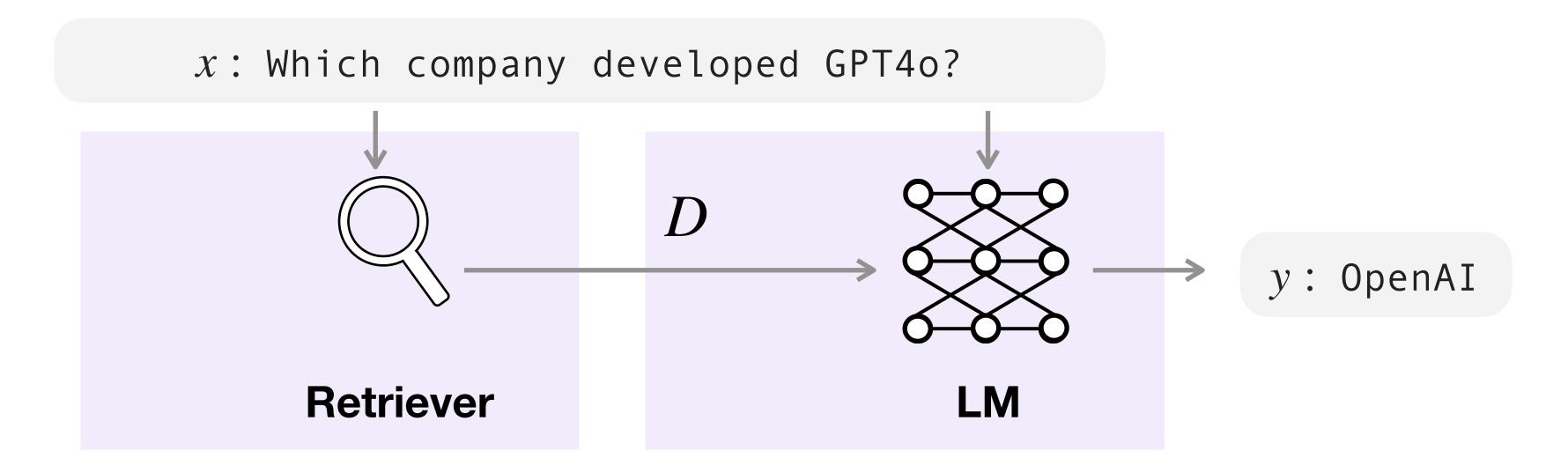
Nonparametric distribution



λ: hyperparameter

$$P_{kNN-LM}(y | x) = (1 - \lambda)P_{LM}(y | x) + \lambda P_{kNN}(y | x)$$

Summary of Part 3

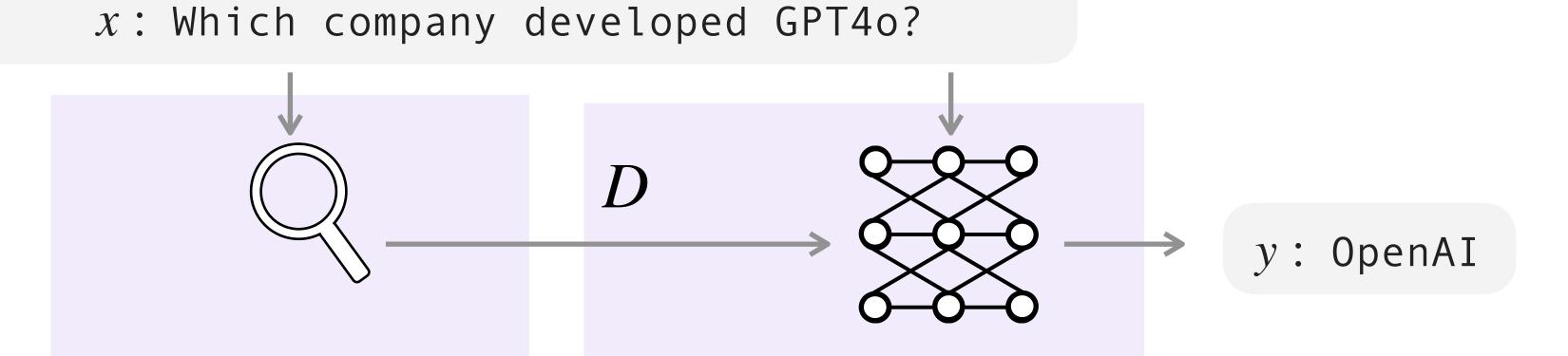


- Common architectures
- Recent progress

- RAG is widely used but several limitations
- Recent progress to overcome such shortcomings
- Other architectures: intermediate incorporation or output interpolation

Part 3: LMs and Pipeline 71

Retrieval and Retrieval-Augmented Generation



- Sources of datastore
- Types of retrievers

Retriever

Common architectures

LM

Processing

Training

Recent progress in RAG

Scaling

Evaluations