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Abstract
Parametric language models (LMs), which are
trained on vast amounts of web data, exhibit re-
markable flexibility and capability. However, they
still face practical challenges such as hallucina-
tions, difficulty in adapting to new data distribu-
tions, and a lack of verifiability. In this position
paper, we advocate for retrieval-augmented LMs
to replace parametric LMs as the next genera-
tion of LMs. By incorporating large-scale datas-
tores during inference, retrieval-augmented LMs
can be more reliable, adaptable, and attributable.
Despite their potential, retrieval-augmented LMs
have yet to be widely adopted due to several ob-
stacles: specifically, current retrieval-augmented
LMs struggle to leverage helpful text beyond
knowledge-intensive tasks such as question an-
swering, have limited interaction between re-
trieval and LM components, and lack the infras-
tructure for scaling. To address these, we pro-
pose a roadmap for developing general-purpose
retrieval-augmented LMs. This involves a recon-
sideration of datastores and retrievers, the explo-
ration of pipelines with improved retriever-LM
interaction, and significant investment in infras-
tructure for efficient training and inference.

1. Introduction
Large language models (LMs) such as GPT-4 (Black et al.,
2022) have shown impressive abilities in a range of natural
language processing (NLP) tasks. Such parametric LMs
encapsulate rich natural language understanding abilities
and a wealth of world knowledge in their parameters, ac-
quired via massive pre-training on large-scale web corpora
(Figure 1, top). However, they still suffer from several funda-
mental weaknesses including W1: the prevalence of factual
errors (Min et al., 2023a; Mishra et al., 2024), W2: the dif-
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Figure 1. Parametric LMs (top) internalize large-scale text data
in their parameters via massive pre-training, while retrieval-
augmented LMs incorporate text retrieved from a massive datastore
at test time.

ficulty of verification (Bohnet et al., 2022), W3: difficulty
of opting out certain sequences with concerns (Henderson
et al., 2023), W4: computationally expensive costs for adap-
tations (Longpre et al., 2023), and W5: prohibitively large
model size (Kandpal et al., 2022a). Moreover, merely scal-
ing up the model has been insufficient to overcome such
limitations (Mallen et al., 2023) or even exacerbates the
challenges (Carlini et al., 2021).

This position paper advocates for retrieval-augmented LMs
to supersede parametric LMs as the next generation of
LMs (Figure 1, bottom). Unlike parametric LMs—which
use large-scale text data only during training—retrieval-
augmented LMs leverage an external large-scale collec-
tion of documents (datastore) at inference by selecting rel-
evant documents from the datastore (Asai et al., 2023a).
Retrieval-augmented LMs can W1: largely reduce factual
errors (Mallen et al., 2023), W2: provide better attributions
(Gao et al., 2023a), W3: enabling flexible opt-in and out of
sequences (Min et al., 2024). By adding or removing data
from their datastores, retrieval-augmented LMs can W4:
easily adapt to new distributions (Khandelwal et al., 2020).
Lifting the burden of memorizing everything in parameters
makes them W5: more parameter-efficient (Izacard et al.,
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2023).

Despite their considerable potential to significantly improve
reliability, adaptability, and attributability, their broader
adoption beyond specific knowledge-intensive tasks such
as question answering (QA; Chen et al. 2017) is currently
limited. We argue that through fundamental advancements
in architecture, training methodologies, and infrastructure
for retrieval-augmented LMs, they can demonstrate sub-
stantial efficacy across diverse domains. We urge the re-
search community to intensify efforts aimed at overcoming
inherent limitations and fostering their widespread adop-
tion. To facilitate future research, we identify several sig-
nificant challenges. First, existing approaches primarily
leverage context with high semantic or lexical similarity to
the input (C1), struggling when valuable text is absent in
common datastores or does not align with conventional rele-
vance definitions (BehnamGhader et al., 2023; Asai et al.,
2023b). Second, prepending the retrieved text to the in-
put, which is widely used in recent retrieval-augmented
LMs, leads to shallow interactions between the retrieval and
LM components (C2). This often results in unsupported
generations (Gao et al., 2023a), susceptibility to irrelevant
text (Yoran et al., 2024), and challenges in handling infor-
mation from multiple pieces of text (Borgeaud et al., 2022).
Furthermore, unlike rapid progress for efficient training and
inference of parametric LMs (Zhao et al., 2023b; Dao et al.,
2022), there are limited studies and open-sourced efforts to
enhance the training and inference efficiency of retrieval-
augmented LMs at scale (C3).

We conclude this paper with a roadmap to advance retrieval-
augmented LMs to foster wider adoption. First, addressing
the challenge of finding helpful text for diverse tasks (C1),
it is important to reconsider the notion of relevance and
advance our understanding of what constitutes an effec-
tive datastore—specifically, exploring the types of infor-
mation that should be retrieved from various datastores to
enhance the performance in broader tasks. Then, we sug-
gest approaches to ensure deeper interactions between the
two components, including architecture, pre-training, and
post-training adaptations (C2), rather than focusing on sup-
plementary enhancement of existing parametric LMs. For
challenges of scaling (C3), we call for more open-sourced
and interdisciplinary efforts across hardware, systems, and
algorithms to develop infrastructures for training and infer-
ence (e.g., scaling datastore to trillion tokens). By pursuing
these avenues, we anticipate unlocking the full capabilities
of retrieval-augmented LMs and expanding their applica-
tions across a spectrum of tasks and domains.

2. How Far Can We Go with Parametric LMs?
We first assess the limitations of parametric LMs. Despite
rapid progress in this area, we argue that parametric LMs

have many practical limitations, which in turn pose signifi-
cant challenges to building reliable intelligent systems.

Definition. A parametric LM (Figure 1, top) consists of
a set of parameters θ. Given input sequences from a large-
scale text dataset Dtrain, learnable parameters θ are trained
to predict the probabilities of future or masked tokens. Dur-
ing test time, for an input sequence x, the trained θ predicts
the outputs: y = fθ(x), without accessing any external data
beyond that of the task at hand.

2.1. Weaknesses of Parametric LMs

Mounting evidence highlights significant limitations in para-
metric LMs. Many such challenges arise from the strategy
of attempting to store all knowledge within the parameters,
which scaling alone may not adequately address.

W1: Factual inaccuracies. Attempting to memorize all
the learned knowledge within the parameters can lead to
factual inaccuracies, which are often called hallucinations.
Several recent papers report that even state-of-the-art LMs
such as ChatGPT exhibit hallucinations in the majority of
their outputs (Min et al., 2023a; Mishra et al., 2024). Mallen
et al. (2023); Kandpal et al. (2022a) show that they particu-
larly struggle with long-tail knowledge—factual knowledge
that is less represented during pre-training—and that scaling
only yields minor improvements. Gudibande et al. (2024)
find that increasing synthetic labeled data during instruction
tuning may not improve the factuality of model outputs.

W2: Difficulty of verifications. Not only have LMs
shown a propensity for hallucinations in their generations,
but it is also difficult for practitioners to fact-check their out-
puts due to a lack of clear attributions or provenance. The
outputs of powerful LLMs are often lengthy, assertive, and
plausible (Min et al., 2023a), which makes post-hoc attri-
butions or factual verification to be challenging and largely
unsolved tasks (Mishra et al., 2024; Yue et al., 2023).

W3: Difficulty of opting out certain sequences from the
datasets. Managing the vast volume of pre-training data
poses a considerable challenge in identifying and filtering
out training instances with potential privacy (Brown et al.,
2022) or copyright-protected data (Lee et al., 2024). Re-
cent work studies intensive red teaming and safety tuning
efforts (Touvron et al., 2023b; Perez et al., 2022), unlearn-
ing (Jang et al., 2023) or iterative pre-training of models on
corpora after removing certain data (Kandpal et al., 2022b).
Yet, the absence of proper attributions further complicates
these endeavors, as tracing back to and eliminating specific
training instances becomes non-trivial (Grosse et al., 2023).

W4: Computationally expensive costs to adapt. Adapt-
ing parametric LMs trained on static unlabeled text (i.e.,
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text collected at a certain timestamp from the web) re-
quires continuous training or computationally-expensive
post-adaptation to new data distributions. For instance, their
parametric knowledge can quickly become obsolete (Long-
pre et al., 2023). While several approaches propose to locate
and edit certain outdated knowledge (De Cao et al., 2021)
or conduct efficient continued training (Jin et al., 2022)
to keep up with the world, these approaches require addi-
tional computationally expensive processes. LMs trained
on widely adopted pre-training corpora often perform well
on general-purpose domains such as news articles (Dodge
et al., 2021), but struggle on expert domains (Taylor et al.,
2022). Prior work demonstrates the effectiveness of contin-
ued pre-training (Azerbayev et al., 2024; Chen et al., 2023b)
or instruction tuning (Singhal et al., 2023), albeit at a consid-
erable computational cost and possibilities of catastrophic
forgetting (Li et al., 2022).

W5: Prohibitively large model size. Numerous studies
showcase the positive impact of model scaling on task per-
formance (Chowdhery et al., 2022; Wei et al., 2022), and
the ability to recall factual knowledge memorized from the
training data (Carlini et al., 2023; Mallen et al., 2023; Kand-
pal et al., 2022a). This trend has prompted the community
to focus on boosting the model size in pursuit of better
performance, at the cost of significant computational chal-
lenges and environmental concerns (Strubell et al., 2019;
Weidinger et al., 2022). Despite efforts to enhance effi-
ciency, hosting these massive models, which often exceed a
hundred billion parameters, remains impractical for many
industry or academic groups (Schwartz et al., 2019).

3. How Can Retrieval-Augmented LMs
Address These Issues?

In this section, we discuss how retrieval-augmented LMs
can alleviate the aforementioned issues in parametric LMs.

Definition. A retrieval-augmented LM (Figure 1, bottom;
detailed in Figure 2) typically consists of two key compo-
nents: a retriever R and a parametric LM θ. The retriever
builds a search index I1 based on documents in the datastore
D. During inference time, given an input sequence x, the
retriever finds relevant text z2 from the inference datastore,
leveraging an index I: z = fR,I(x). Subsequently, the
LM θ uses both the original prompt and the retrieved text to
predict the output y: y = fθ(x, z).

1In term-based retrieval systems such as BM25 (Robertson &
Zaragoza, 2009) that count the occurrences of words in documents
in the datastore, the index I is a weighted bag-of-words vector,
while in more recent trainable neural retrieval systems such as
DPR (Karpukhin et al., 2020), the index is a collection of float
embeddings encoded by an encoder LM.

2There are different granularities for relevant text z (e.g., text
chunks, tokens, phrases). See Section 4.1.1 for more details.

Origins, progress, and recent shift. The concept of
retrieval augmentation has been extensively explored across
various machine learning domains (Tian et al., 2019). In
NLP, earlier efforts have been applied to specific tasks such
as question answering (QA) and machine translation. Chen
et al. (2017) introduce DrQA, which combines a term-based
information retrieval (IR) system with a neural QA model to
answer knowledge-intensive questions. While IR and such
task LMs were initially studied separately, several studies
explore more organic combinations of retrieval and LM,
including REALM (Guu et al., 2020), RAG (Lewis et al.,
2020a), RETRO (Borgeaud et al., 2022), etc.

Such earlier work designed special architectures and training
objectives for the retrieval-augmented LM. Most recently,
there has been a shift of view of retrieval-augmented LMs—
instead of training retrieval-augmented LMs from scratch,
some work supplementary integrate retrieval on top of ex-
isting powerful parametric LMs (e.g., GPT-3; Black et al.
2022) without any additional training. Such methods—often
referred to simply as RAG—concatenate the original input
sequence x with retrieved text z when prompting, yield-
ing significant improvements over the base parametric LMs
on certain knowledge-intensive tasks (Ram et al., 2023;
Shi et al., 2023c). Many recent studies explore advanced
prompting methods with retrieval components (Yao et al.,
2023; Press et al., 2023) or develop pipelines for further
improvements (Gao et al., 2023b). RAG has been integrated
into real-world applications such as LLM search systems.3

3.1. Effectiveness of Retrieval-Augmented LMs

We now review some empirical findings from prior studies
suggesting their effectiveness in addressing the weaknesses
of parametric LMs discussed in Section 2.1.

W1: Reduced factual errors in long-tail knowledge. Re-
cent studies show that retrieval-augmented LMs can allevi-
ate the shortcomings of parametric memorization by explic-
itly capturing long-tail knowledge (Mallen et al., 2023). As
a result, retrieval-augmented LMs can minimize hallucina-
tions and improve the factuality of generated outputs (Lewis
et al., 2020b; Izacard et al., 2023; Ram et al., 2023; Shi
et al., 2023c; Asai et al., 2024; Min et al., 2023b).

W2: Better attributions. Retrieval-augmented LMs pro-
vide retrieved results z used during inference, which can
help practitioners inspect the correctness of model outputs
manually (Liu et al., 2023) or automatically (Mishra et al.,
2024). Another way for verification is post-hoc attribution—
given the model output y, finding documents that support y.
Yet prior work finds that retrieval-augmented LMs using ev-
idence at inference time provide more accurate attributions
than such post-hoc attributions than post-hoc attribution

3https://bard.google.com/chat
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(Gao et al., 2023a; Malaviya et al., 2023)

W3: Enabling flexible opt-in of sequences. Retrieval-
augmented LMs offer some effective solutions to concerns
related to massive training data through improved attribu-
tions and adaptable datastore updates. Enhanced attribu-
tions enable practitioners to exclude specific sequences from
the datastore, mitigating the risk of generating them verba-
tim (Carlini et al., 2021). Additionally, integrating datas-
tores during inference allows retrieval-augmented LMs to
maintain performance across domains not included in their
training data (Min et al., 2024).

W4: Adaptability and customizability. The separation
and the interchangeability of knowledge sources for the
datastore enables better customization to specific domains,
applications, and time stamps, without the need for addi-
tional training (Khandelwal et al., 2020; Min et al., 2024).
Recent work has shown that retrieval augmentation can even
outperform LMs fine-tuned on the downstream domain data
on QA (Ovadia et al., 2023; Gupta et al., 2024). Such ef-
fectiveness for domain adaptation has also been reported in
non-knowledge-intensive tasks, including machine transla-
tion (Shi et al., 2022; Min et al., 2024; Khandelwal et al.,
2021; Zhong et al., 2022). Updating the datastore with up-to-
date knowledge also bypasses the issue of data obsoleteness
of parametric LMs (Izacard et al., 2023; Zhong et al., 2023;
Mitchell et al., 2022; Kasai et al., 2023).

W4: Parameter efficiency. By lifting the burden of mem-
orizing all knowledge in the model parameters, retrieval-
augmented LMs often show strong parameter efficiency—
retrieval-augmented LMs with much fewer LM parame-
ters can outperform larger, more powerful parametric LMs.
For example, on knowledge-intensive tasks such as QA,
retrieval-augmented LMs surpass parametric LMs with or-

ders of magnitude more parameters by a large margin (Izac-
ard et al., 2023; Min et al., 2023b).

4. Why Haven’t Retrieval-Augmented LMs
Been Widely Adopted?

Despite showing some empirical promise, the adoption of
retrieval-augmented LMs remains limited compared to para-
metric LMs. To understand the obstacles hindering the
widespread adoption, we provide a brief review of existing
retrieval-augmented LMs under our unified taxonomy for
architectures (Figure 2), training, and datastores, as summa-
rized in Table 1.

4.1. Current State of Retrieval-augmented LMs

4.1.1. ARCHITECTURE

Retrieval-augmented LMs have diverse architectures. We
introduce a taxonomy defining architecture based on three
axes (Table 1 left): what the unit of retrieved text z is (gran-
ularity of z), how z is incorporated (incorporation of z), and
how often z is retrieved (frequency of retrieval).

Here, we classify approaches based on how they incorpo-
rate the retrieved text z (the Incorporation column in Ta-
ble 1), Essentially, retrieval-augmented LMs’ architectures
can be classified into the following three groups: 1) input
augmentation, 2) intermediate fusion, and 3) output in-
terpolation. Refer to Figure 2 for a taxonomy of these
architectures.

For a more comprehensive review of the architecture, includ-
ing aspects such as the granularity of retrieval and retrieval
frequency, refer to Appendix B.1. In essence, input augmen-
tation and intermediate fusion typically involve retrieving
text chunks and processing them with parametric LMs. On
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Table 1. Diverse retrieval-augmented LMs based on our architecture and training taxonomies. Full references of the papers are as follows:
DrQA (Chen et al., 2017), REALM (Guu et al., 2020), RAG (Lewis et al., 2020b), ATLAS (Izacard et al., 2023), RALM (Ram et al.,
2023), REPLUG (Shi et al., 2023c), Active Retriever (Jiang et al., 2023), Self-RAG (Asai et al., 2024), RETRO (Borgeaud et al.,
2022), InstructRetro (Wang et al., 2023a), kNN LM (Khandelwal et al., 2020), TRIME (Zhong et al., 2022), NPM (Min et al., 2023b),
CopyGenerator (Lan et al., 2023), SPALM (Yasunaga et al., 2022), Adaptive kNN (Drozdov et al., 2022). ∗ indicates that approaches
combining off-the-shelf models without any training.

Granularity Incorporation Frequency Training Data order

DrQA Chunks Input One-time Independent O(109)
REALM, RAG, ATLAS Chunks Input One-time Joint O(109)
RALM, REPLUG Chunks Input Every k tokens, One-time Independent∗ O(109)
Active-Retriever, Self-RAG Chunks Input Adaptive Independent*, Sequential O(109)
RETRO, InstructRetro Chunks Intermediate Every k tokens Sequential O(1012)
kNN LM, TRIME Tokens Output Every token Independent∗, Joint O(109)
NPM, Copy Generator Phrases Output Every phrase Joint O(109)
SPALM, Adaptive kNN Tokens Output Adaptive Joint O(109)

the other hand, output interpolation directly retrieves suc-
cessive tokens or phrases, resulting in a much larger index.
Unlike traditional approaches, which involve retrieving only
once (One-time) such as DRQA, recent studies have high-
lighted the effectiveness of retrieval over specific token inter-
vals (Every k tokens; Ram et al. 2023) or adaptively (Asai
et al., 2024; Jiang et al., 2023; Drozdov et al., 2022).

Input augmentation. Input augmentation simply aug-
ments the original input x with retrieved results z in the
input space of the LM θ and runs a standard LM inference.
As in the pioneering work from Chen et al. (2017), input
augmentation enables flexible plug-ins of different models
for retrieval and LM components. Many widely adopted
models, including those that augment powerful LLMs with
off-the-shelf retrievers, mostly belong in this category (Yao
et al., 2023; Shi et al., 2024). One notable bottleneck to this
approach is redundancy and inefficiency; encoding many
documents together in the input space leads to context length
window limitations and increases inference costs exponen-
tially (Xu et al., 2024). While some work such as FiD (Izac-
ard et al., 2023) explores parallel encoding to overcome
such inefficiencies, the same documents are still encoded
repeatedly for each input x.

Intermediate fusion. To integrate retrieved results in a
more scalable manner, RETRO (Borgeaud et al., 2022) in-
troduces a new attention mechanism, which takes many
pre-encoded text chunks independent of query x and si-
multaneously incorporates them in intermediate spaces.
RETRO++ (Wang et al., 2023b) and InstructRetro (Wang
et al., 2023a) demonstrate the effectiveness of this method
on top of larger, decoder-only LMs. However, a drawback
of intermediate fusion is the need for extensive architecture
modification and pre-training of LMs for the new encoding
blocks, potentially limiting widespread adoption.

Output interpolation. Both input augmentation and in-
termediate fusion require the LM to generate continuations
from their vocabularies. In contrast, kNN LM (Khandel-
wal et al., 2020) interpolates a parametric LM token dis-
tribution with a retrieved token distribution, without the
need for additional training. Some work extends this di-
rection by designing new training objectives (Zhong et al.,
2022) or completely replacing parametric distributions with
a non-parametric distribution over each phrase in the datas-
tore (Min et al., 2023b; Lan et al., 2023).

4.1.2. TRAINING

Retrieval-augmented LMs consist of three main compo-
nents: the index I, the retriever R (i.e., a model that gener-
ates encoding of input and documents), and the LM θ. How
to efficiently and simultaneously update them to optimize
the whole pipeline remains a challenging question. Cur-
rently, there are two paradigms: independent or sequential
training and joint training (Table 1 Training).

Independent or sequential training. Independent train-
ing involves the separate development of a retriever and
LM with no direct interactions during training. This in-
cludes methods such as kNN LM, or recently, RAG applied
to off-the-shelf LMs and retrieval systems. This allows
practitioners to leverage existing training pipelines and ob-
jectives to enhance the individual components. There has
been rich literature in the area of IR on how to build reli-
able and efficient IR systems. Classical term-based retrieval
systems, such as TF-IDF or BM25 (Robertson & Zaragoza,
2009), have been widely used. More recently, neural re-
trieval systems, such as DPR (Karpukhin et al., 2020) or
ColBERT (Khattab & Zaharia, 2020), have shown superior
performance. Extensive pre-training of retrieval models fur-
ther improved such models (Izacard et al., 2022; Lin et al.,
2023). For a comprehensive review of retrieval systems, we
direct readers to prior surveys (Zhao et al., 2023a).
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Yet, independent training is often sub-optimal for the whole
retrieval-augmented LM pipeline; for instance, LMs trained
without retrieval could become easily distracted by irrele-
vant preceding context (Shi et al., 2023a). To alleviate this
issue, sequential training trains either the retriever or LM
first, and then trains the other subsequently using signals
from the first trained component. Many studies train the
LM component with a powerful pre-trained retriever e.g.,
DPR, search engines, or frozen pre-trained encoders (Izac-
ard & Grave, 2021a; Nakano et al., 2021; Borgeaud et al.,
2022), or conversely, train the retriever with signals from
the LM (Shi et al., 2023c; Izacard & Grave, 2021b).

Joint training. Joint training simultaneously trains the LM
and retrieval components to further optimize their interac-
tions and the end-to-end retrieval-augmented LM pipeline.
A notable challenge in joint training is the substantial com-
putational overhead incurred by updating both the retriever
model and the resulting index during training. It is im-
practical to repeatedly generate embeddings for millions
or billions of documents in the datastore at each time step.
There are two approaches to achieve this under reasonable
resource requirements: updating the datastore with updated
parameters asynchronously or using an in-batch approxi-
mation to a full datastore. Asynchronous updating is a
technique that allows the index to grow stale over a fixed
number of training steps before the update, aiming to use
the full corpus during training (Izacard et al., 2023), as in
inference time. There is a tradeoff between the update
frequency and computational overhead (Guu et al., 2020):
to obtain better performance, the index should be updated
more frequently. In-batch approximation builds a tempo-
rary index on the fly using training samples from the same
mini-batch, which serves as an approximation to the full
index during training (Zhong et al., 2022; de Jong et al.,
2022; Min et al., 2023b; Lan et al., 2023). Designing train-
ing batches that can provide strong training signals requires
careful consideration.

4.1.3. APPLICATIONS AND DATASTORES

Applications. Retrieval-augmented LMs have proven ef-
fective in various NLP tasks. Notably, their impact is more
pronounced on knowledge-intensive tasks (Guu et al., 2020;
Lewis et al., 2020a; Izacard et al., 2023). Several studies
showcase their efficacy in machine translation (Khandelwal
et al., 2020; Gu et al., 2018) as well as broader language un-
derstanding tasks (Min et al., 2023b; Shi et al., 2022). There
are also decoding methods that leverage post-hoc retrieval
augmentations to produce more efficient or factual gener-
ations (He et al., 2023; Shi et al., 2023b), or knowledge
editing capabilities (Zhong et al., 2023). A further overview
of applications with details of adaptation methodologies is
in Appendix B.2.

Datastores. Designing and building a reliable datastore is a
key challenge of retrieval-augmented LMs. The inference
datastore D may not be necessarily equivalent to the training
datastore and is task-dependent. Some works, such as kNN
LM or NPM (Min et al., 2023b), leverage the same corpus
as the training data D = Dtrain on more general tasks, while
for certain downstream tasks, a smaller and general-domain
corpus is often used (e.g., Wikipedia). Conversely, curating
high-quality, domain-focused corpora is important for some
tasks, e.g., code generation (Hayati et al., 2018; Zhou et al.,
2023). As Table 1 shows, most prior work use a datastore
that is on the order of O(109) tokens, with examples such
as Wikipedia containing roughly a few billion tokens. No-
tably, Wang et al. (2023a); Borgeaud et al. (2022) scale the
datastore to over one trillion tokens, showcasing a large
perplexity reduction.

4.2. Limitations of Current Models

We next identify several core challenges inherent to existing
retrieval-augmented LMs, as summarized in Table 2.

C1: Limitations of retrievers and datastores. Despite
the success of retrieval-augmented LMs on knowledge-
intensive tasks, their broader applications often result in
restricted success. For example, retrieval-augmented LMs
only yield marginal gains on reasoning tasks, which can be
attributed to weaknesses in both the retrieval and LM com-
ponents (BehnamGhader et al., 2023; Lin et al., 2024). We
hypothesize that this stems from a misalignment between
conventional retrieval and LM training objectives, as well as
the used datastore. Consider answering a factual knowledge-
based question: a retriever can efficiently search documents
akin to a query in Wikipedia, and an LM can subsequently
copy or paraphrase the retrieved information. However, the
types of beneficial text vary significantly based on the task.
Existing retrieval systems evaluate the relevance of docu-
ments primarily by assessing their high lexical or semantic
similarities to the input. Yet, such “relevant” documents
often do not help tasks in reasoning or general language
understanding (Rubin et al., 2022). It is still unclear what
makes certain retrieved contexts more effective than overs.
The heavy dependence on Wikipedia as a datastore (Sec-
tion 4.1.3) could also limit its effectiveness, as real-world
applications frequently encounter queries that may not find
direct answers in Wikipedia (Asai & Choi, 2021).

C2: Limited interactions between retrievers and LMs.
Common approaches, such as RAG, often straightforwardly
entail appending retrieved results to the input of pre-trained
parametric LMs and adopting input augmentation (Sec-
tion 4.1.1), due to its simplicity and effectiveness by lever-
aging state-of-the-art parametric LMs. However, these
methods lack close interactions between the retrieval and
LM components throughout both training and inference.
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Table 2. Current status of retrieval-augmented LMs and future directions.

Current State of Retrieval-Augmented LMs (§4) Advancing Retrieval-Augmented LMs (§5)

C1: Usage of R ✗ Semantic and lexical similarity only ✓ Beyond semantic and lexical similarity
and D ✗ Single and general-domain corpora ✓ Datastores for wider applications
C2: Interaction ✗ Limited interactions beyond input augmentations ✓ Architectures with deep LM-retriever interactions
of R and θ ✗ Lack of joint optimization from the end use ✓ Large-scale joint training techniques
C3: Infrastruc-
tures for scaling

✗ Lack of standardized libraries beyond RAG ✓ Standardized and open-sourced library for retrieval-
based LMs

& adoptions ✗ Difficulty in large-scale training and inference ✓ Infrastructure for large-scale training and inference

This deficiency amplifies issues such as unsupported gen-
erations (Gao et al., 2023a) or susceptibility to irrelevant
context, as noted in Yoran et al. (2024); Shi et al. (2023a).
Moreover, input augmentation increases the context length
of LMs, leading to an exponential increase in inference
costs (Xu et al., 2024). This becomes particularly prob-
lematic when downstream applications require systems to
assimilate information from multiple documents (Fan et al.,
2019). Extended context can also induce LMs to overlook
significant portions of the input (Liu et al., 2023). Training
retriever and LM jointly remains challenging and requires
careful selections of hyperparameters and heuristics, as dis-
cussed in Section 4.1.2.

C3: Lack of infrastructure specialized for retrieval-
based LMs. Relative to parametric LMs, the optimiza-
tion of retrieval-augmented LM training procedures has
been comparatively under-studied, from both methodolog-
ical and infrastructural standpoints. For instance, open-
sourced software such as PyTorch FSDP4 or DeepSpeed5

enable resource-efficient parametric LM pre-training via
techniques such as Fully Sharded Data Parallelism (Zhao
et al., 2023b) or Zero Redundancy Optimizers (Rasley et al.,
2020), respectively. While retrieval-augmented LMs can
certainly leverage improvements made to their paramet-
ric components, what remains lacking are focused efforts
that address challenges unique to retrieval-augmented LMs.
Synchronously updating large-scale indexes during training
introduces significant computational overhead, and how to
efficiently update the index under normal computational
environments remains challenging (Section 4.1.2).

Inference in retrieval-augmented LMs can also be sig-
nificantly more expensive than in standard parametric
LMs (Mallen et al., 2023), especially if the datastore is
large (e.g., over one trillion tokens). As scaling pre-training
data leads to better parametric LMs, some studies empiri-
cally show that scaling the datastoresis promising (Borgeaud
et al., 2022). Yet, nearest neighbor searches over billions
of embeddings without extensive tricks can consume hun-

4https://pytorch.org/docs/stable/fsdp.
html

5https://github.com/microsoft/DeepSpeed

dreds of GPUs or prohibitively high RAM usage. Scaling
costs thus hinder prior efforts to use larger datastores (Sec-
tion 4.1.3).

5. How Can We Further Advance
Retrieval-Augmented LMs?

We believe that the community needs to develop robust
intelligent systems based on retrieval-augmented LMs that
surpass fully parametric LMs. We discuss strategies for over-
coming the technical constraints associated with retrieval-
augmented LMs.

5.1. Rethinking Retrieval and the Datastore (C1)

Beyond semantic and lexical similarity. Extending
the use of retrieval-augmented LMs beyond conventional
knowledge-centric tasks necessitates the formulation of a
new definition for “relevance”. This is essential for excelling
in tasks where informative text may not exhibit semantic or
lexical similarity to the input query. Recent works show
that few-shot in-context learning demonstrations (Su et al.,
2023a) or even unlabeled text (Lyu et al., 2023) could boost
model performance on reasoning or language understand-
ing tasks. Yet, what makes certain documents helpful (e.g.,
underlying reasoning patterns, or writing style) remains an
open question. Acquiring a better understanding of the char-
acteristics of helpful documents could unlock the potential
of retrieval-augmented LMs. Furthermore, we should build
retrieval systems capable of contextualized retrieval, rather
than building task-specific retrieval pipelines: developing
a versatile retriever that adjusts its search behavior based
on diverse notions of similarity with additional input. For
instance, Instruction-tuned retrievers (Asai et al., 2023b; Su
et al., 2023b) exemplify this direction.

Reconsidering and improving the datastore. When it
comes to wider, general downstream applications, or con-
versely more expert-domain tasks, over-reliance on a single,
general-domain corpus such as Wikipedia may hinder the
capability of retrieval-augmented LMs. As discussed in
Section 4.1.3, the curation and composition of the datas-
tore significantly impact the final performance. Yet, many
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open questions exist regarding how to build and ensure high-
quality and effective datastores. For instance, should we
introduce a quality filter to the documents in the datastore,
as common practice in pre-training data processing (Black
et al., 2022)? How should we balance multiple domains in a
datastore (Shao et al., 2023)? Despite the abundance of liter-
ature on what constitutes good LM pre-training data (Long-
pre et al., 2023), there have been limited explorations so far
on what data ought to go into the datastore.

5.2. Enhancing Interactions of Retriever and LM (C2)

New architectures beyond input augmentation. As dis-
cussed, the input augmentation of powerful LMs (RAG)
comes with several limitations that could be addressed by
more specialized, integrated architectures, such as output
interpolation or intermediate fusion. While recent work
shows the success of new architectures (Wang et al., 2023b;
Min et al., 2023b; Lan et al., 2023), compared to massively
pre-trained parametric LMs, their training and model size
are often smaller, due to high computational costs for pre-
training. Furthermore, approaches that employ a smaller
granularity of retrieval (e.g., token level in Section 4.1.1)
pose significant challenges. We urge collaborative efforts
for scalable, effective architecture designs and pre-training—
While pre-training retrieval-augmented LMs is computation-
ally expensive, we hope that we can address that challenge
through collaborative multi-institution efforts, as in several
successful parametric LM pre-training (Workshop et al.,
2022; Groeneveld et al., 2024).

Incorporating retrieval during LM pre-training. Off-
the-shelf parametric LMs trained without retrieval compo-
nents often struggle with leveraging additional context (Shi
et al., 2023a). Pre-training LMs with retrieval has proven to
be effective (Guu et al., 2020; Lewis et al., 2020a; Izacard
et al., 2023), but often requires significant additional train-
ing costs, or non-trivial modifications to the standard LM
architecture. Recently, Shi et al. (2024) shows that retriev-
ing similar text chunks and reordering pre-training corpora
can enhance LMs’ abilities to reason over long sequences or
perform retrieval augmentation for diverse tasks. These im-
provements do not require the modification of pre-training
pipelines or model architectures. As such, the exploration
of methods to induce LMs to leverage retrieved context with
minimal or no additional costs remains promising.

Further adaptation after pre-training. Significant ar-
chitecture modification or pre-training are efforts that re-
quire massive computing. One promising avenue under
resource-constrained environments is to explore adaptations
of retrieval-augmented LMs after pre-training. For instance,
despite the rapid developments of versatile instruction-
following parametric LMs, the exploration of instruction-

following retrieval-augmented LMs (Lin et al., 2024; Luo
et al., 2023; Asai et al., 2024) or RLHF for retrieval-
augmented LMs (Nakano et al., 2021; Bohnet et al.,
2022) remains comparatively scarce. Augmenting existing
instruction-tuned LMs trained without retrieval can often
cause suboptimal performance as the LMs are not explicitly
trained to use the retrieved context. Further investigation for
better post-hoc adaptation recipes (e.g., instruction-tuning,
RLHF) for retrieval-augmented LMs may unleash their ef-
fectiveness across diverse downstream adaptations. Recent
studies demonstrate the promise of incorporating additional
components to filter out irrelevant context (Xu et al., 2024;
Yoran et al., 2024) or instructing an LM to learn to distin-
guish (Asai et al., 2024). Exploring enhanced pipelines or
inference-time algorithms could further improve reliability.

Efficient End-to-end training of retrieval-augmented
LMs. Retrieval errors often stand out as prominent issues
in retrieval-augmented LMs (Asai & Choi, 2021; Yoran
et al., 2024). Rather than focusing on optimizing the LM
component in isolation, it is crucial to jointly optimize the
retriever component. Some tasks have demonstrated suc-
cess in updating only the input encoding component without
modifying the index after pre-training (Izacard et al., 2023;
Lin et al., 2024). Another alternative strategy involves in-
troducing additional components, such as reranking models,
and training them in an end-to-end fashion with LMs. In
many downstream tasks, no supervised labels are available
to train retrieval systems. Exploring effective training strate-
gies without supervision on the latent variable for positively
retrieved context (Lee et al., 2019; Singh et al., 2021) is
essential for enabling the training of retrieval-augmented
LMs for a broader range of applications.

5.3. Building Better Systems and Infrastructures for
Scaling and Adaptation (C3)

Scalable search for massive-scale datastores. We be-
lieve significant efforts and expertise from interdisciplinary
areas, including systems and algorithms, will enable practi-
tioners to leverage large-scale datasets. For instance, explor-
ing compression and quantization algorithms for billions of
text embeddings is an important area (Douze et al., 2024),
as well as faster nearest neighbor search algorithms (Wang
et al., 2021). Open-sourced toolkits such as FAISS (John-
son et al., 2017) could accelerate such progress. Another
bottleneck of datastore-scaling is the storage requirements
that millions or billions of encoded documents require, and
how to efficiently load them during inference. Some recent
works propose to significantly reduce the index size by stor-
ing the index as binary vectors (Yamada et al., 2021; Cao
et al., 2024). Besides algorithmic improvements and system
development, another promising avenue is the development
of specialized hardware for retrieval-augmented LMs. Com-
pared to parametric LMs, retrieval-augmented LMs may
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require fewer GPUs, while it is often CPU-heavy and re-
quires fast access to the datastore. Collaborative efforts
from hardware, systems, and algorithms to LM applications
could help us tackle these challenging problems.

Standardization and open-source developments. There
are several repositories such as LangChain,6 LlamaIndex,7

and DSPy (Khattab et al., 2024)8 that enable practitioners
to build RAG on top of existing retrievers, parametric LMs,
and user-provided datastores. Yet, we still lack a standard-
ized implementation of retrieval-augmented LM pipelines
and evaluation benchmarks that can flexibly accommodate a
range of architectures and training configurations (Sections
4.1.1 and 4.1.2) beyond RAG. As open-sourced efforts have
facilitated the rapid progress of parametric LMs, we urge the
community to similarly build a standardized open-source
implementation for retrieval-augmented LMs.

6. Conclusion
This paper advocates for retrieval-augmented LMs as the
next generation of LMs to build more reliable, adaptable,
and attributable intelligent systems. Despite their notable
advantages over parametric LMs, their adoption remains
limited. This limitation may be attributed to the focus on a
narrow form of retrieval augmentation, which simply com-
bines exiting retrieval models and LMs in post-hoc manners
to supplement parametric LMs. We outline a roadmap for
fundamentally advancing retrieval-augmented LMs in terms
of architectures, training methodologies, and infrastructure.
We emphasize the importance of collaborative interdisci-
plinary efforts to achieve these advancements.

Impact Statements
We believe the adoption of retrieval-augmented LMs could
address those fundamental limitations inherent to parametric
LMs. We hope that this position paper will inspire further
exploration in these areas, and collaboratively foster the ad-
vancement of retrieval-augmented LMs. However, concerns
may arise. The effectiveness of retrieval-augmented LMs
in tasks beyond knowledge-intensive domains remains an
open question, necessitating thorough assessments. Further-
more, retrieval-augmented LMs may not completely address
issues such as hallucinations.
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A. Progress of Parametric LMs
The rise of parametric LMs. Pre-training to develop better parametric representations of text has been recently extensively
studied. BERT (Devlin et al., 2019) is considered to be the first pre-trained LM trained on large-scale text, built upon prior
great success on pre-trained contextualized representations (ELMo; Peters et al. 2018). BERT is an encoder-only, masked
LM that is trained to fill in blanks (masked tokens) during pre-training, similar to several widely used pre-trained models such
as RoBERTa (Liu et al., 2020). BART (Lewis et al., 2020a) or T5 (Raffel et al., 2020), on the other hand, are encoder-decoder
models that are trained in both masked and autoregressive manners. GPT (Radford et al., 2018) and GPT-2 (Radford et al.,
2019) are decoder-only, autoregressive LMs that predict continuations of input tokens. Recent research highlights the
advantages of expanding both the parameter count of models and the scale of pre-training datasets (Rae et al., 2021). Many
proprietary LLMs such as 175B GPT-3 (Black et al., 2022), GPT-4 (OpenAI, 2023) or publicly released checkpoints such as
Llama 1 (Touvron et al., 2023a) and Llama 2 (Touvron et al., 2023b), which training a smaller number of parameters on
trillions of tokens, have shown strong performance across various tasks.

Versatile, instruction-following systems. Starting with GPT-3 (Brown et al., 2020), large parametric LMs have demon-
strated an emergent ability known as in-context learning—the ability to adapt to new tasks through few-shot prompting
without needing any updates to its parameters. Further studies demonstrate the impact of large-scale supervised training
across varied input-output pairs, as well as subsequent refinements using reinforcement learning with human feedback
(RLHF), resulting in powerful instruction-following models (Ouyang et al., 2022; Wang et al., 2023c; Dubois et al., 2023).

Infrastructure for scalability and efficiency. The necessity of training and hosting massive parametric LMs has motivated
active interdisciplinary research and open-source developments to reduce the computational costs and time of training and
inference. For instance, open-sourced software such as PyTorch FSDP9 or DeepSpeed10 enable more resource-efficient
parametric LM pre-training via techniques such as Fully Sharded Data Parallelism (Zhao et al., 2023b) or Zero Redundancy
Optimizers (Rasley et al., 2020), respectively. FlashAttention (Dao et al., 2022) accelerates training and long-context
processing. Intensive ongoing research addresses the challenges of high inference costs of massive parametric LMs;
memory-efficient inference algorithms such as PagedAttnetion (Kwon et al., 2023) used in vllm11 are proposed to speed up
the inference of billion-scale parametric LMs.

B. Detailed Taxonomy of Retrieval-augmented LMs
B.1. Architectures

We introduce a taxonomy of architectures of retrieval-based LMs. Our taxonomy (Figure 2) is based on three axes: (1) the
granularity of retrieval (what to retrieve), (2) the incorporation method (how to use retrieval), and the (3) frequency of
retrieval (when to retrieve). This taxonomy extends the summarized taxonomy in Section 4.1.1.

B.1.1. GRANULARITY OF RETRIEVAL

We specify the retrieval granularity as follows: text chunks or smaller granularity such as tokens, phrases, or entities. While
it has shown to be effective, text chunks often contain more information than necessary, resulting in redundancy.

Text chunks. The retrieval of text chunks, such as 100-word paragraphs, is a prevalent strategy in widely used retrieval-
augmented LMs such as REALM, RAG, and RETRO. To implement this, a large-scale corpus D is segmented into text
chunks based on the number of tokens or predefined structures like section headers or paragraphs. Retrieved chunks are
typically integrated into input space or intermediate layers, which we discuss in detail in the following section, while recent
work shows that the choice of length significantly affects performance (Chen et al., 2023a). LMs are expected to predict
output token probability distributions by jointly leveraging their original knowledge in parameters and retrieved text chunks.

Tokens and phrases. Several work explores much smaller units such as tokens (Khandelwal et al., 2020) or phrases (Min
et al., 2023b). Given the input prompt x, such token or phrase retrieval-augmented LMs directly search possible next tokens
from the datastore by matching the input prompt and similar prefixes in the datastore, instead of making the LM read and
generate from the vocabulary. Token or phrase retrieval can often result in a much larger index size compared to text chunk

9https://pytorch.org/docs/stable/fsdp.html
10https://github.com/microsoft/DeepSpeed
11https://github.com/vllm-project/vllm
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retrieval given the same size of datastore (i.e., the number of embeddings is by default equal to the number of tokens in the
datastore).

B.1.2. INCORPORATION METHOD

Another important axis is how the retrieved information. Essentially, retrieval-augmented LMs’ architectures can be
classified into the following three groups: 1) input augmentation, 2) intermediate fusion, and ) output interpolation.

Input augmentation. Input augmentation simply augments the original input x with retrieved results z in the input space of
the LM θ and runs a standard LM inference. As in the pioneering work by Chen et al. (2017), input augmentation enables
flexible plug-ins of different models for retrieval and LM components. For instance, ATLAS (Izacard et al., 2023) and
REALM pre-trains LMs jointly with the retriever, while some recent work leverage off-the-shelf pre-trained LMs and
retrievers (Ram et al., 2023; Shi et al., 2023c). One notable bottleneck is its redundancy and inefficiency; encoding many
documents together in input space faces context length window limitations and increases inference costs exponentially (Xu
et al., 2024). While some work such as FiD (Izacard et al., 2023) explores parallel encoding to overcome such inefficiencies,
still the same documents need to be encoded repeatedly for each input x.

Intermediate fusion. To integrate retrieved results in a more scalable manner, RETRO (Borgeaud et al., 2022) introduces
a new attention mechanism called chunked cross attention (CCA). CCA takes many pre-encoded text chunks, which are
independent of query x unlike input augmentation, simultaneously in intermediate spaces by adding a new block between
standard cross attention and feed-forward network in Transformer (Vaswani et al., 2017). Recently, RETRO++ (Wang
et al., 2023b) and InstructRetro (Wang et al., 2023a) incorporated CCA into powerful autoregressive LMs. However, a
drawback of intermediate fusion is the need for architecture modification and pre-training of LMs for the new encoding
blocks, potentially limiting widespread adoption. Several studies focus on similar architectures for retrieving information
from long-context input (Wu et al., 2022; Rubin & Berant, 2023).

Output interpolation. The two incorporation methods described above still let LMs generate continuations from their
vocabularies, which often results in unsupported or unattributed generations (Liu et al., 2023; Gao et al., 2023a; Bohnet
et al., 2022). Instead, some models directly manipulate output token distributions. kNN LM interpolates the original LM’s
softmax token distributions with retrieved token distribution without additional training. Some work extends this direction
by designing new training objectives (Zhong et al., 2022) or completely replacing a nonparametric distribution over every
phrase in a reference corpus (Min et al., 2023b; Lan et al., 2023).

B.1.3. FREQUENCY OF RETRIEVAL

Another significant design choice in retrieval-augmented LMs is the frequency of retrieval. In essence, opting for more
frequent retrieval tends to enhance performance, but comes at the expense of increased computational overhead. Retrieving
once before generating given input x has been widely used such as REALM or DrQA, often in input space incorporation
architectures. kNN LM, on the other hand, retrieves at every token, or some work retrieves every k token to maintain the
relevance between the target sequence and retrieved context (Ram et al., 2023). Several recent papers introduce methods
that make LMs adaptively decide when to retrieve (Jiang et al., 2023; Asai et al., 2024).

B.2. Applications and Datastore

This section briefly reviews the applications of retrieval-augmented LMs and used datastores.

Applications. Retrieval-augmented LMs are shown to be effective across a range of NLP tasks, including discriminative
and generative tasks. The majority of prior work is often evaluated on knowledge-intensive tasks, such as open-domain
QA (Kwiatkowski et al., 2019), fact verification (Thorne et al., 2018) and knowledge-grounding dialogue (Shuster et al.,
2021). For such tasks, Wikipedia is often used as the sole knowledge source, while some recent work directly combines LMs
with commercial search engine APIs. For non-knowledge-intensive tasks, the usage of training instances (labeled data) as the
datastore has been widely explored, demonstrating effectiveness on tasks like machine translation (Khandelwal et al., 2021;
Zhong et al., 2022). Some recent works such as kNN-Prompt (Shi et al., 2022) or NPM (Min et al., 2023b) leverage larger
pre-training corpora (e.g., the Pile; Gao et al. 2020) for more general language understanding tasks (e.g., sentiment analysis)
or entity translations. Yu et al. (2022) build a new large-scale corpus consisting of 20 million commonsense documents
collection from both open-domain knowledge sources. Several works on code generations use similar codes (Hayati
et al., 2018) or documentation (Zhou et al., 2023) of APIs. Designing and building a reliable datastore is a key challenge
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in retrieval-augmented LMs. Across those papers, retrieval-augmented LMs have shown significant improvements over
parametric LMs.

Furthermore, retrieval-augmented LMs have been applied beyond general-domain, English text data. Several works explore
retrieving from multilingual data (Asai et al., 2021; Nie et al., 2023) or multiple modalities (Yasunaga et al., 2022; Chen
et al., 2022)—which includes underexplored modalities such as robot controls (Zha et al., 2023). While prior work often
explores retrieving from general-domain datastore such as Wikipedia, some recent work shows that retrieving from a targeted
datastore is largely helpful to solve more challenging expert domain tasks, such as theorem proving (Welleck et al., 2022;
Yang et al., 2023) or molecule generation (Wang et al., 2023d).
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